

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Parallel Implicit Nonlinear Solvers in Large-Scale Computational Science

Lois Curfman McInnes Computational Scientist Mathematics and Computer Science Division Argonne National Laboratory

2009 SIAM Annual Meeting Denver, CO July 9, 2009

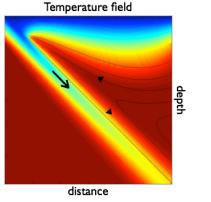
Acknowledgments

U.S. Department of Energy – Office of Science

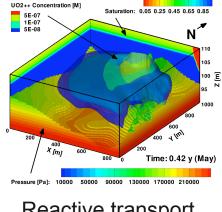
- Base applied math program
- Scientific Discovery through Advanced Computing (SciDAC): <u>http://www.scidac.gov/</u>

Collaborators

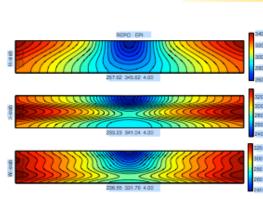
- B. Smith, S. Balay, W. Gropp, D. Kaushik, D. Keyes, M. Knepley,
 H. Zhang and other PETSc contributors
- B. Norris, V. Bui, L. Li, R. Armstrong, D. Bernholdt and other TASCS collaborators
- Scientific applications teams, especially J. Cary, R. Katz, R. Mills,
 L. Pavarino, A. Pletzer, T. Rognlien


Motivation

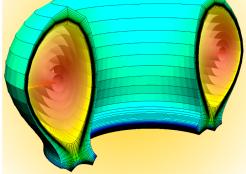
- Preconditioned Newton-Krylov methods
 - Algorithms
 - Software
- Scientific applications
 - Ongoing challenges
- Conclusions



A few motivating applications


Large-scale nonlinear equations Solve F(u) = 0, where F: Rⁿ → Rⁿ

Magma dynamics, R. Katz et al.



Reactive transport, P. Lichtner et al.

J. Cary et al.

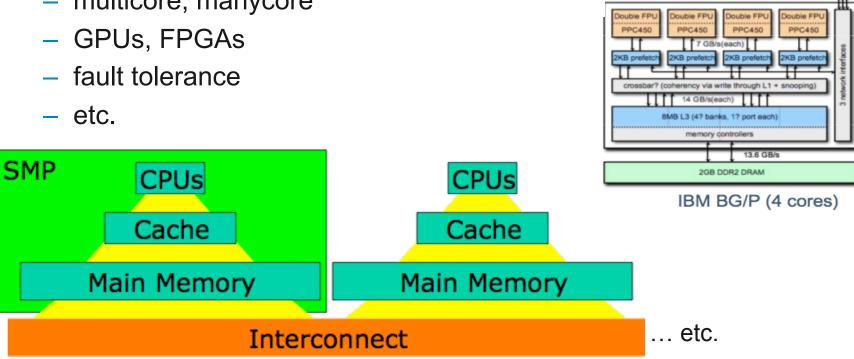
Core-edge fusion,

Bioelectric activity of the heart, L. Pavarino et al.

What are the algorithmic needs?

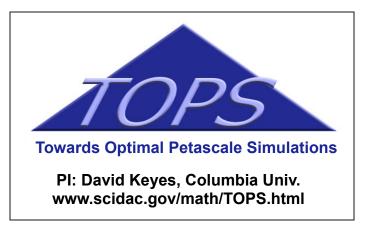
Large-scale, nonlinear, PDE-based

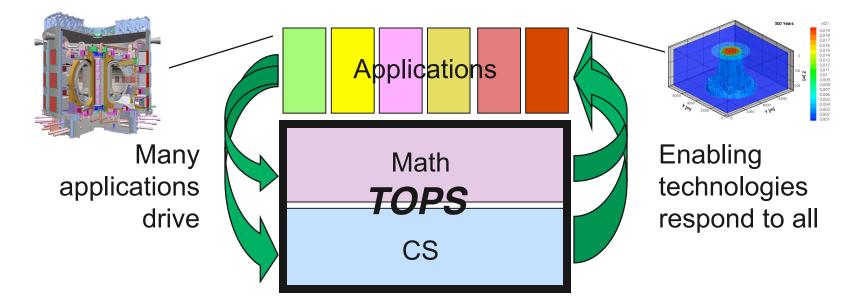
- Multirate, multiscale, multicomponent, multiphysics
- Rich variety of time scales and strong nonlinearities
- Ultimately want to do systematic parameter studies, sensitivity analysis, stability analysis, optimization


Need

- Fully or semi-implicit solvers
- Multilevel algorithms
- Support for adaptivity
- Support for user-defined customizations (e.g., physics-informed preconditioners)

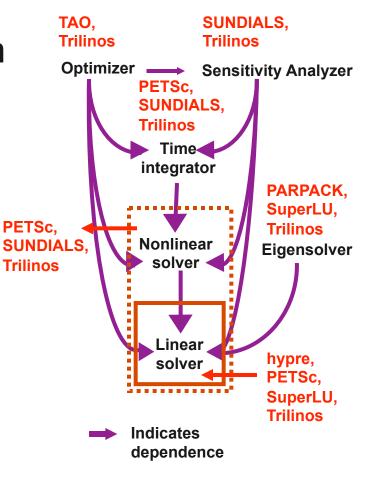
Target computer architectures


- Systems have increasingly deep memory hierarchy
- Time to reference main memory 100's of cycles
- Additional complexities
 - multicore, manycore



TOPS: A SciDAC Center for Enabling Technology

- TOPS develops, demonstrates, and disseminates robust, quality engineered, solver software for high-performance computers
- Institutions: ANL, LBNL, LLNL, SNL, Columbia U, Southern Methodist U, U of California - Berkeley, U of Colorado -Boulder, U of Texas - Austin



Overall scope of TOPS

Design and implementation of "solvers"

- Linear solvers Ax = b- Eigensolvers $Ax = \lambda Bx$ our emphasis Nonlinear solvers F(x, p) = 0- Time integrators (with sensitivity analysis) F(x, x, t, p) = 0- Optimizers $\min_{u} \phi(x, u) \ s.t. \ F(x, u) = 0, u \ge 0$

Software integrationPerformance optimization

Primary emphasis of TOPS numerical software

Some popular nonlinear solution strategies

Splitting

- Often by equation or by coordinate direction
- Motivated by desire to solve complicated problems with limited computer resources

Nonlinear Multigrid Methods

 E.g., Full approximation scheme (FAS) performs relaxation on the full nonlinear problem on each successively coarsened grid

Newton-Krylov Methods

our emphasis

 Two levels of iteration: Newton on the outside and Krylov on the inside

Newton's method

Newton nonlinear solver

Based on multivariate Taylor expansion:

 $F(u^{l+1}) = F(u^{l}) + F'(u^{l})(u^{l+1} - u^{l})$ + higher order terms

$$F'(u^{l-1}) \,\delta u^l = -F(u^{l-1})$$
$$u^l = u^{l-1} + \lambda \,\delta u^l$$

Can achieve quadratic convergence when sufficiently close to solution
 Can extend radius of convergence with line search, trust region, or continuation methods (e.g., pseudo-transient continuation, mesh sequencing)

Krylov methods

Krylov accelerator

Projection methods for solving linear systems, Ax=b, using the Krylov subspace

 $K_{j} = span(r_{0}, Ar_{0}, Ar_{0}^{2}, ..., Ar_{0}^{j-1})$

- Require A only in the form of matrix-vector products
- Popular methods include CG, GMRES, TFQMR, BiCGStab, etc.
- In practice, preconditioning typically needed for good performance

Challenges in preconditioning

Cluster eigenvalues of the iteration matrix (and thus speed convergence of Krylov methods) by transforming Ax=b into an equivalent form:

 $B^{-1}Ax = B^{-1}b$ or $(AB)^{-1}(Bx) = b$

where the inverse action of *B* approximates that of *A*, but at a smaller cost

How to choose B so that we achieve efficiency and scalability? Common strategies include:

- Lagging the evaluation of B
- Lower order and/or sparse approximations of B
- Parallel techniques exploiting memory hierarchy, e.g., additive Schwarz
- Multi-level methods
- User-defined custom physics-based approaches

The need for derivatives

$$F'(u^{l-1})\,\delta u^l = -F(u^{l-1}) \blacktriangleleft$$

Solve approximately using a preconditioned Krylov method

- Newton-Krylov methods require derivatives in the form of Jacobian-vector products, F'(u)v
- Also typically require F'(u) (or a "cheaper" approximation) for use in preconditioning
- Options: Can provide either F'(u) or F'(u)v via
 - Analytic code (written by application developer)
 - Sparse finite difference approximation (FD)
 - Automatic differentiation (AD), see <u>www.autodiff.org</u>

Can be provided by libraries

Matrix-free Jacobian-vector products

Approaches

- Finite differences (FD)
 - F'(x) v = [F(x+hv) F(x)]/h
 - costs approximately 1 function evaluation
 - challenges in computing the differencing parameter, h; must balance truncation and round-off errors
- Automatic differentiation (AD)
 - costs approx 2 function evaluations, no difficulties in parameter estimation
 - e.g., ADIFOR & ADIC

Advantages

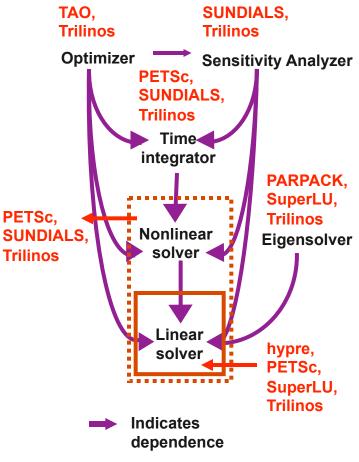
- Newton-like convergence without the cost of computing and storing the true Jacobian
- In practice, still typically perform preconditioning

Reference

 D.A. Knoll and D.E. Keyes, Jacobian-free Newton-Krylov Methods: A Survey of Approaches and Applications, 2004, *J. Comp. Phys.*, 193: 357-397.

Complementary TOPS nonlinearsolver librariesTAO,
TrillinosS

PETSc: SNES


- www.mcs.anl.gov/petsc/
- Scalable Nonlinear Equations Solvers

SUNDIALS: KINSOL

- computation.llnl.gov/casc/sundials/
- Based on NKSOL

Trilinos: NOX

- trilinos.sandia.gov/packages/nox/
- Nonlinear Object Oriented Solutions

Primary emphasis of TOPS numerical software

Features of TOPS nonlinear solvers

- Emphasize Newton-Krylov methods
- Physicists want to concentrate on physics instead of solvers
 - Express nonlinear solver tasks at a level of mathematical abstraction
 - Exploit state-of-the-art linear solvers as these evolve under the interface
 - Run the same code on laptops, networks of workstations, and leadership-class machines

Bonus: Sensitivity, optimization, parameter estimation, boundary control require the ability to apply the inverse action of the Jacobian: available in all Newton-like implicit methods

PETSc Background

PETSc: Portable, Extensible Toolkit for Scientific computation: www.mcs.anl.gov/petsc

- Supported "research" code
- Free for everyone, including industrial users
- Extensive documentation, many tutorial-style examples
- Support via email: petsc-maint@mcs.anl.gov
- Usable from Fortran 77/90, C, C++, Python

Long-term goals

- Provide software for the scalable (parallel) solution of algebraic systems arising from PDE-based problems
- Support interfaces to other solver packages (TOPS and more)
- Provide the building blocks for scalable optimization and eigenvalue computations
- Eliminate the MPI from MPI programming!

PETSc numerical libraries

Nonlinear Solvers				Time Steppers				
Newton-based Methods		Others		Euler	Backward	Pseudo Time Stepping	Others	
Line Search	Trust Region	Others	Euler	Euler	Stepping	Others		

	Krylov Subspace Methods								
ſ	GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Others	

Preconditioners							
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU	Redundant	Others

Matrices							
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Symmetric BAIJ (SBAIJ)	Dense	Matrix-free	Others		

Distribute	ed Arrays	Index Sets					
		Indices	Block Indices	Stride	Others		
Vectors							

Features of PETSc/SNES

Preconditioned Newton-Krylov methods

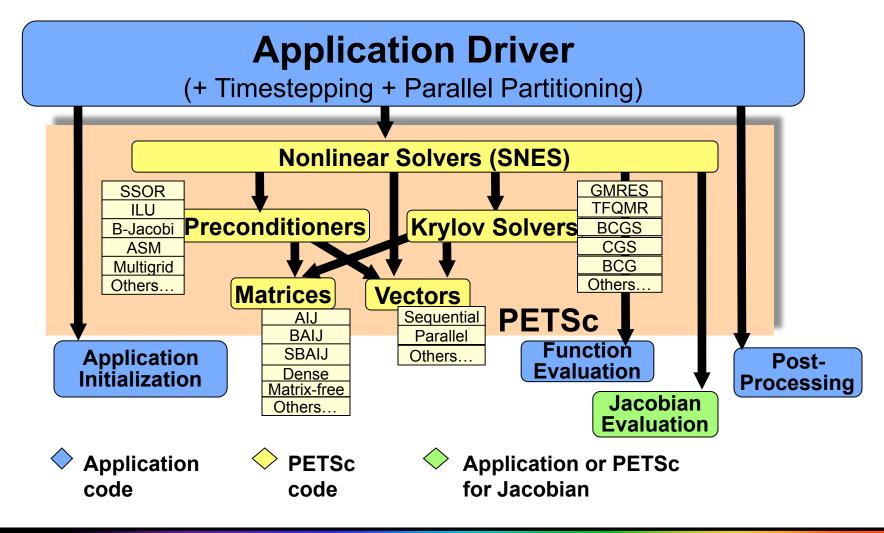
- Line search and trust region globalization strategies
- Eisenstat-Walker approach for linear solver convergence tolerance
- Uses high-level abstractions for matrices, vectors, linear solvers
 - Easy to customize and extend, facilitates algorithmic experimentation
 - Supports matrix-free methods
 - Jacobians available via application, Finite Differences (FD) and Automatic Differentiation (AD)

Application provides to SNES

- Residual: PetscErrorCode (*func) (SNES snes, Vec x, Vec r, void *ctx)
- Jacobian (optional): PetscErrorCode (*func) (SNES snes,
 Vec x, Mat *J, Mat *M, MatStructure *flag, void *ctx)

DMComposite: New support for multiphysics problems, see B. Smith, MS69, July 9, 5:00 pm

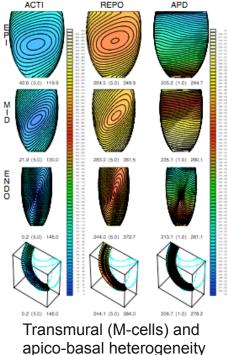
Outline


Motivation

- Preconditioned Newton-Krylov methods
 - Algorithms
 - Software
- Scientific applications
 - Ongoing challenges
- Conclusions

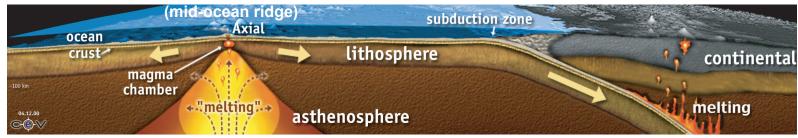
Application perspective on SNES

Solve F(u) = 0: Fully implicit matrix-free Newton-Krylov methods

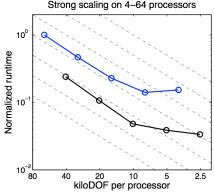


SNES usage: bioelectric activity of the heart

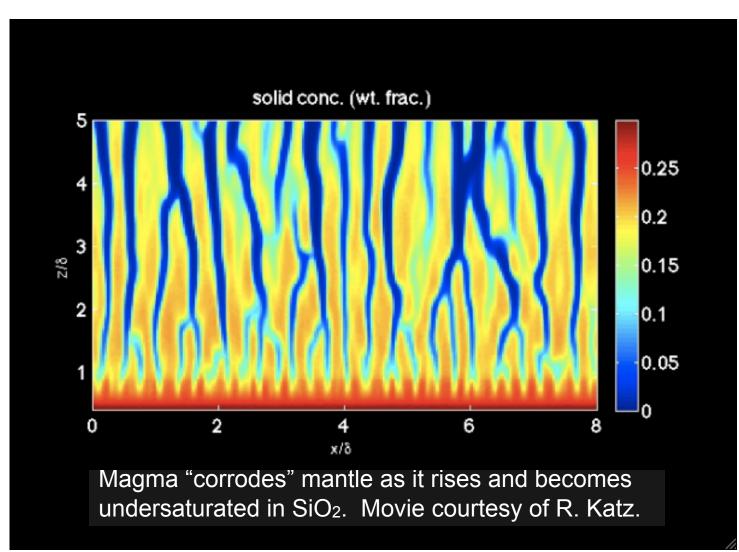
- Developers: Luca Pavarino (University of Milan, Italy) et al.
- Background: Reaction-diffusion system of degenerate parabolic PDEs
- Discretization: Finite elements in space + implicit (decoupled) time discretizations lead to F(u) = 0
- Solvers: Bidomain Newton-Krylov-Schwarz (multilevel overlapping Schwarz research)


References:

- L.F. Pavarino, S. Scacchi, Multilevel Additive Schwarz Preconditioners for the Bidomain Reaction-Diffusion System, *SIAM J. Sci. Comp.*, 31 (1): 420 - 443, 2008
- M. Munteanu, L. F. Pavarino, Decoupled Schwarz Algorithms for Implicit Discretizations of Nonlinear Monodomain and Bidomain Systems, *Math. Meth. Mod. Appl. Sci.*, 19 (7), 2009
- P.Colli Franzone et al., Math. Biosc. 2006+2008; J. Electrocard., 2005

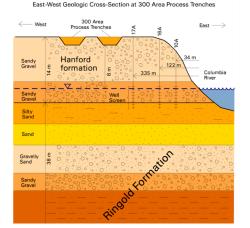

SNES usage: magma dynamics

- Developers: R. Katz (U. of Oxford), M. Spiegelman (Columbia U.), assistance with PETSc issues by M. Knepley and B. Smith
- Background: Plate tectonics is linked to volcanism; continuum approach for magma dynamics: mantle convection + magmatic flow + phase transitions
- Discretization: Finite volume in space + semi-Lagrangian discretiz. of Lagrangian time derivatives lead to F(u) = 0
 Strong scaling on 4-64 processors
- **Solvers:** Newton-Krylov-Schwarz


References:

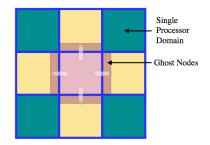
- R. Katz and M. Worsterl, J. Comp. Phys. 227, 9823-9840, 2008
- R. Katz et al., *Phys. of the Earth and Planetary Interiors,* 2007
- R. Katz, M. Knepley, B. Smith, M. Spiegelman, E. Coon, *Phys. Earth Planet. In.*, 163, 52-68, 2007

Simulation of magmatic reactive flow



SNES usage: reactive groundwater flow & transport

SciDAC project: PFLOTRAN


- PI P. Lichtner (LANL)
- https://software.lanl.gov/pflotran

 Overall goal: Continuum-scale simulation of multiscale, multiphase, multicomponent flow and reactive transport in porous media; applications to field-scale studies of geologic CO2 sequestration, contaminant migration

Model: Fully implicit, finite volume discretization, multiphase flow, geochemical transport

- Initial TRAN by G. Hammond for DOE CSGF practicum
- Initial FLOW by R. Mills for DOE CSGF practicum
- Initial multiphase modules by P. Lichtner and C. Lu
- PETSc usage: Preconditioned Newton-Krylov algorithms + parallel structured mesh management (B. Smith)

PFLOTRAN governing equations

Mass conservation: flow equations

$$\frac{\partial}{\partial t}(\phi s_{\alpha}\rho_{\alpha}X_{i}^{\alpha}) + \nabla \cdot \left[q_{\alpha}\rho_{\alpha}X_{i}^{\alpha} - \phi s_{\alpha}D_{i}^{\alpha}\rho_{\alpha}\nabla X_{i}^{\alpha}\right] = Q_{i}^{\alpha}$$

$$q_{\alpha} = -\frac{kk_{\alpha}}{\mu_{\pi}}\nabla(p_{\alpha} - W_{\alpha}\rho_{\alpha}gz) \qquad p_{\alpha} = p_{\beta} - p_{c,\alpha\beta}$$

Energy conservation equation

$$\frac{\partial}{\partial t} \left[\phi \sum_{\alpha} s_{\alpha} \rho_{\alpha} U_{\alpha} + (1 - \phi) \rho_{r} c_{r} T \right] + \nabla \cdot \left[\sum_{\alpha} q_{\alpha} \rho_{\alpha} H_{\alpha} - \kappa \nabla T \right] = Q_{e}$$

Multicomponent reactive transport equations

$$\frac{\partial}{\partial t} \left[\phi \sum_{\alpha} s_{\alpha} \Psi_{j}^{\alpha} \right] + \nabla \cdot \left[\sum_{\alpha} \Omega_{\alpha} \right] = -\sum_{m} v_{jm} I_{m} + Q_{j}$$

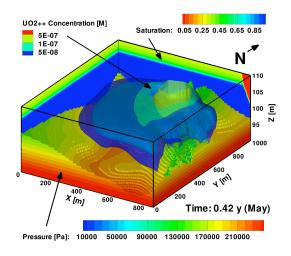
Total concentration

 $\frac{\partial \phi_m}{\partial m} = V_m I_m$

Total solute flux $\Psi_{j}^{\alpha} = \delta_{\alpha l} C_{j}^{\alpha} + \sum v_{j i} C_{i}^{\alpha} \qquad \Omega_{j}^{\alpha} = (-\tau \phi s_{\alpha} D_{\alpha} \nabla + q_{\alpha}) \Psi_{j}^{\alpha}$

Mineral mass transfer equation

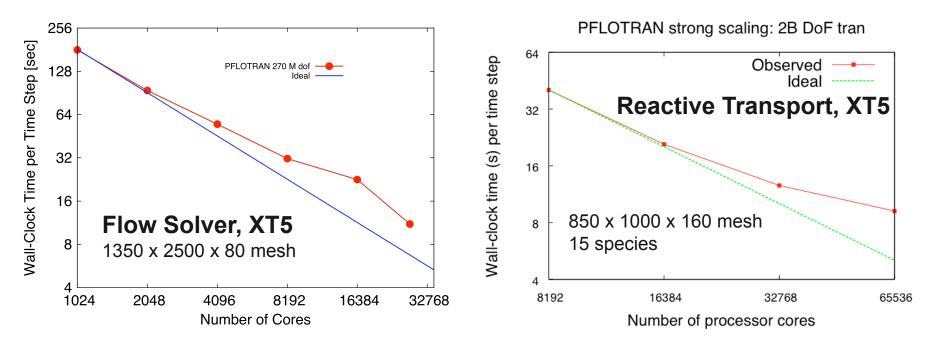
$$\phi + \sum_{m} \phi_{m} = 1$$


PDEs for **PFLOW** and **PTRAN** have general form $\frac{\partial A}{\partial t} + \nabla \bullet F = s$ đt

Dominant computation of each can be expressed as:

Solve F(u) = 0

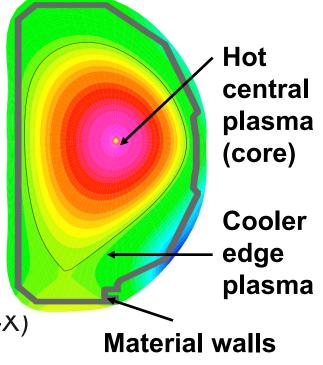
Hanford 300 benchmark on Jaguar (Cray XT5 at ORNL)


Modeled uranium plume at the Hanford site; computed on 32,000 cores of the Cray XT5

- 37538 quad-core 2.3 GHz Opteron compute nodes (150152 CPU compute cores)
- Additional nodes to handle OS services (I/O, etc.)
- 1.4 petaflops theoretical peak performance
- 300 terabytes aggregate RAM; 10,000 terabytes parallel disk storage

SNES / PFLOTRAN scalability

- Results courtesy of R. Mills (ORNL). More details + multiphysics issues: See R. Mills, MS69, July 9, 4:30 pm
- Inexact Newton w. line search using BiCGStab + Block Jacobi/ILU(0)
- PETSc/SNES design facilitates algorithmic research: reduced synchronization BiCGStab


SNES usage: FACETS fusion

SciDAC project: FACETS:

Framework Application for Core-Edge Transport Simulations

- PI John Cary, Tech-X Corp,
- <u>https://www.facetsproject.org/facets/</u>
- Overall goal: Develop a tight coupling framework for core-edge-wall fusion simulations
- Initial solvers focus: Incorporated SNES into
 - UEDGE (T. Rognlien et al., LLNL): 2D plasma/neutral transport
 - New core solver (A. Pletzer et al., Tech-X)

Nonlinear PDEs in core and edge

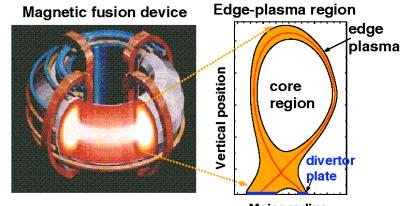
Core: 1D conservation laws: Edge: 2D conservation laws: Continuity, momentum, and thermal energy equations for electrons and ions: $\frac{\partial q}{\partial t} + \nabla \bullet F = s$ $\frac{\partial n}{\partial t} + \nabla \bullet (n_{e,i} v_{e,i}) = S_{e,i}^{p}$, where $n_{e,i} \& v_{e,i}$ are electron and ion densities and mean velocities $nm_{e,i}\frac{\partial v_{e,i}}{\partial t} + m_{e,i}n_{e,i}v_{e,i} \bullet \nabla v_{e,i} = \nabla p_{e,i} + qn_{e,i}(E + v_{e,i} \times B/c)$ where $q = \{ p \mid a sma density, \}$ electron energy density, $-\nabla \bullet \Pi_{a,i} - R_{a,i} + S_{a,i}^m$ ion energy density} where $m_{e,i}, p_{e,i}, T_{e,i}$ are masses, pressures, temperatures q, E, B are particle charge, electric & mag. fields F = fluxes, including $\Pi_{e,i}, R_{e,i}, S_{e,i}^m$ are viscous tensors, thermal forces, source neoclassical diffusion. electron/ion temperature, $\frac{3}{2}n\frac{\partial T_{e,i}}{\partial t} + \frac{3}{2}nv_{e,i} \bullet \nabla T_{e,i} + p_{e,i}\nabla \bullet v_{e,i} = -\nabla \bullet q_{e,i} - \Pi_{e,i} \bullet \nabla v_{e,i} + Q_{e,i}$ gradient induced turbulence, etc. *s* = particle and heating sources where $q_{e,i}, Q_{e,i}$ are heat fluxes & volume heating terms and sinks Also neutral gas equation Challenges: highly nonlinear Challenges: extremely anisotropic transport, extremely strong fluxes nonlinearities, large range of spatial and temporal scales

Dominant computation of each can be expressed as nonlinear PDE: Solve F(u) = 0, where *u* represents the fully coupled vector of unknowns

UEDGE: 2D plasma/neutral transport

Edge-plasma region key for integrated modeling of fusion devices

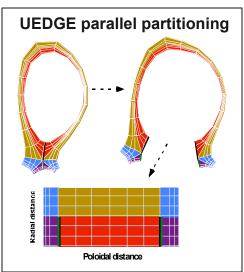
- Edge-pedestal temperature has large impact on fusion gain
- Plasma exhaust can damage walls
- Impurities from wall can dilute core fuel and radiate substantial energy
- Tritium transport key for safety

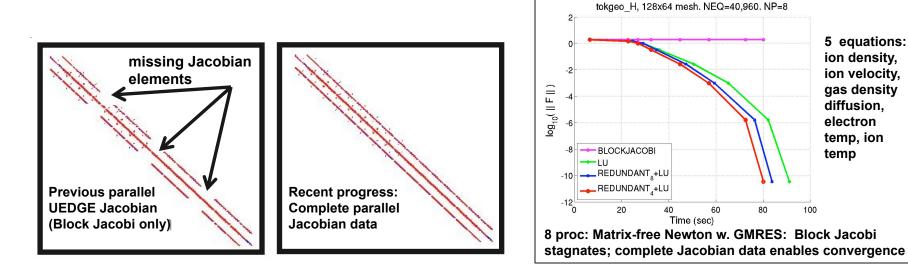

UEDGE features

- Multispecies plasma; var. $n_{i,e},\,u_{\parallel i,e},\,T_{i,e}$ for particle density, parallel momentum, and energy balances
- Reduced Navier-Stokes or Monte Carlo neutrals
- Multi-step ionization and recombination
- Finite volume discretization; nonorthogonal mesh

References:

- T. D. Rognlien and M. E. Rensink, Fusion Engineering and Design, 60: 497-514, 2002.
- T. D. Rognlien, X. Q. Xu, and A. C. Hindmarsh, Journal of Computational Physics, 175: 249-268, 2002.

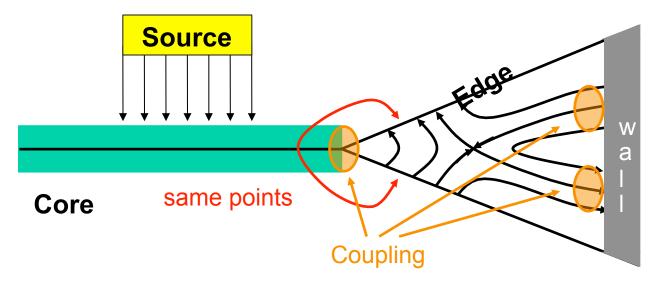


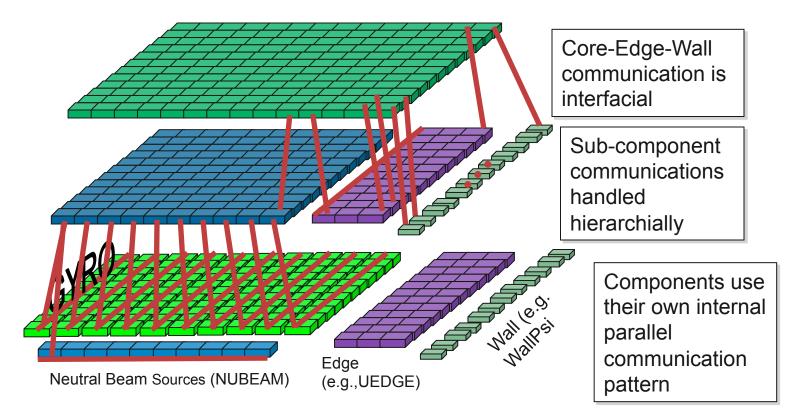


Major radius

UEDGE: More complete parallel Jacobian data enables robust solution for problems with strong nonlinearities

- **New capability:** Computing parallel Jacobian using matrix coloring for finite differences
 - More complete parallel Jacobian data enables more robust parallel preconditioners
- **Impact:** Enables inclusion of neutral gas equation (difficult for highliy anisotropic mesh, not possible in prior parallel UEDGE approach); useful for crossfield drift cases

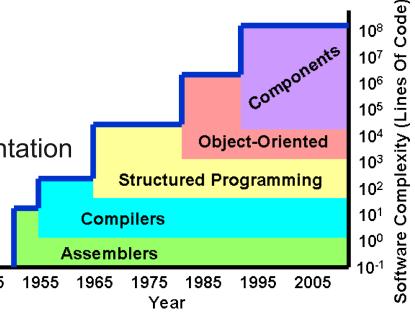



Idealized view: Surfacial couplings

- Core: collisionless, 1D transport system with local, only-cross-surface fluxes
- Edge: collisional 2D transport system
- Wall: beginning of a particle trapping matrix

Core + edge in FACETS framework

- Beginning simulations of pedestal buildup of DIII-D experimental discharges
- Further details: J. Cary, MS80, July 10, 11:30 am


Software challenges for high-performance computational science

- Exploiting emerging leadership-class systems for multimodel simulations at extreme scale
 - Scalability in problem size/complexity, resources (CPUs, memory)
 - Also software size/complexity/rate of change, human factors
- Software is a team effort
 - Geographically distributed
 - Multidisciplinary
- Software must be robust, but flexible
 - Much larger than any single contributor can deeply understand
 - Much longer lifetime than specific platforms, contributors
 - Must allow effective integration of many contributions
 - Must allow evolution of algorithms, scientific focus

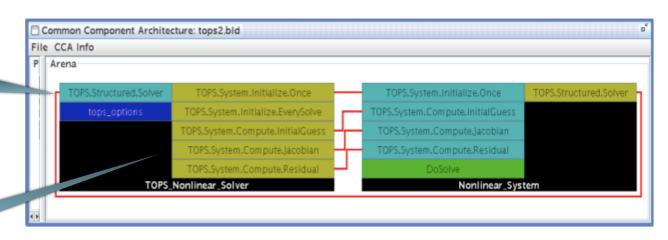
Components help manage software complexity

- Object-oriented techniques are useful for building individual components by relatively small teams; component technologies facilitate sharing of code developed by different groups by addressing issues in
 - Language interoperability
 - Via interface definition language (IDL)
 - Common interfaces
 - Enable "plug-and-play"
 - Dynamic composability
- Can easily convert from an object orientation to a component orientation
- Reference: C. Szyperski, Component Software: Beyond Object-Oriented Programming, ACM Press, New York, 1998

TASCS: A SciDAC Center for Enabling Technology

- TASCS leads development of the Common Component Architecture (CCA), a component architecture specially designed for high-performance scientific computing
 - Supports parallel and distributed computing
 - Supports mixed language programming
 - Currently: C, C++, Fortran, Java, Python
 - Support for platforms, data types, etc. important to HPC
 - Support for legacy software

TASCS Institutions: ANL, LLNL, ORNL, PNNL, SNL, Binghamton U, Indiana U, Tech-X, U Maryland, U Oregon, Virginia State U


TOPS (non)linear solver components

Components

- Units of software functionality
- Interact only through well-defined interfaces
- Can be composed into applications base on their interfaces

Ports

- Interfaces through which components interact
- Follow a provides/uses pattern
- Provided ports are implemented by a components
- Used ports are functionality a component needs to call

Frameworks

ports

and executed

components

Hold components while

Control the connections of

applications are assembled

Provide standard services to

Wiring diagram from Ccaffeine framework's GUI (SNL)

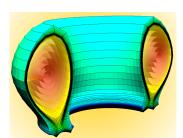
38

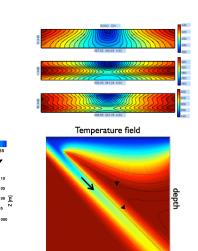
TASCS component technology initiatives address new research challenges

Emerging HPC Hardware and Software Paradigms

 Fully harness unprecedented computing power of massively parallel, heterogeneous architectures (multiple levels of parallelism, hybrid hardware, fault tolerance)

Software Quality and Verification


- Lightweight runtime enforcement of behavioral semantics to help in correct software usage
- Computational Quality of Service (CQoS) & Adaptivity
 - Exploit component automation to help scientists choose among algorithmic implementations & parameters, thereby creating opportunities for enhanced performance
 - collaboration with SciDAC Performance Engineering Research Institute (PERI)


Facilitate enhancements to nonlinear solvers for multidisciplinary applications on emerging leadership-class machines

Summary

- Parallel implicit nonlinear solvers are effective for solving many large-scale PDE-based applications
- TOPS researchers pay careful attention to
 - Usability and robustness
 - Portability
 - Algorithmic efficiency (optimality)
 - Implementation efficiency (within a processor and in parallel)
- Users can readily employ TOPS nonlinear solver libraries
 - Application simply provides code for nonlinear function, *F(u)*
 - Then can extend/customize based on individual priorities

distance

Saturation: 0.05.0.25.0.45.0.65.0.1

5E-07 1E-07

Summary (cont.)

- Parallel implicit solvers offer a foundation for addressing increasing challenges in large-scale computational science:
 - Quote from D.E. Keyes: "We [TOPS team] aim to carry users from "one-off" solutions to the full scientific agenda of *sensitivity*, *stability*, and *optimization* (from heroic *point studies* to systematic *parametric studies*) all in one software suite."
 - Reference: D.E. Keyes, *A Nonlinearly Implicit Manifesto*, 2007
 Sidney Fernbach Lecture, see
 <u>www.columbia.edu/~kd2112/Fernbach_2007.pdf</u>
- Many diverse and challenging research issues
 - E.g., exploring nonlinear multigrid issues
 - See speakers in MS56, MS69, MS80: Implicit Nonlinear Solvers in Multimodel Simulations

Minisymposium: Implicit Nonlinear Solvers in Multimodel Simulations

Part I: MS56: July 9, 10:30-12:30 am

- 10:30-10:55 Nonlinear Solvers and Their Multiphysics Applications, C. Woodward, LLNL
- 11:00-11:25 Application of Newton-Krylov Methods to the Implicit Solution of Problems in Radiation Hydrodynamics, E. Myra, U of Michigan; D. Swesty, SUNY Stony Brook
- 11:30-11:55 Schur-Complement and Block-Preconditioned Iterative Techniques for Coupled Subsurface Flow and Geomechanics, J. White and R. Borja, Stanford University
- 12:00-12:25 Implicitly Coupled Solvers for the Simulation of Fluid-Structure Interaction, A. Barker and X.-C. Cai, U of Colorado at Boulder

Part 2: MS69: July 9, 4:00-6:00 pm

- 4:00-4:25 Towards Fully-Implicit Parallel Adaptive Solution of Mantle Convection Problems,
 L. Wilcox, C. Burstedde, O. Ghattas, U of Texas at Austin; M. Gurnis, Caltech; G. Stadler, UT Austin;
 Eh Tan, Caltech; T. Tu and J. Worthen, UT Austin; Shijie Zhong, U of Colorado at Boulder
- 4:30-4:55 Parallel Implicit Solvers in Multiphase Flow and Reactive Transport in Porous Media, R. Mills, ORNL
- 5:00-5:25 Software Development of Composite Solvers for Electrical Power Systems, B. Smith and H. Zhang, ANL; S. Abhyankar, Illinois Institute of Technology
- 5:30-5:55 Progress on the Development of an Implicit Fully-coupled Stabilized FE Resistive MHD Solver, J. Shadid and R. Pawlowski, SNL

Minisymposium: Implicit Nonlinear Solvers in Multimodel Simulations (cont.)

Part 3: MS80: July 10, 10:30-12:30 am

- 10:30-10:55 Algorithms and Software for Multiphysics Computational Nuclear Engineering, D. Knoll and R. Park, Idaho National Laboratory
- 11:00-11:25 Preconditioned Jacobian Free Newton-Krylov Methods for Reactor Fuel Performance Simulation, G. Hansen, C. Newman, and D. Gaston, Idaho National Laboratory

11:30-11:55 *Implicit Nonlinear Solvers in Coupled Core-Edge Fusion Models*, J. Cary, Tech-X Corporation; S. Balay, ANL; R. Cohen and T. Epperly, LLNL; D. Estep, Colorado State U; R. Groebner, General Atomics; A. Hakim and S. Kruger, Tech-X; A. Malony, Paratools; L.C. McInnes, ANL; M. Miah, Tech-X; A. Morris, Paratools; A. Pankin, Lehigh U.; A. Pletzer, Tech-X; T. Rognlien, LLNL; S. Shasharina, Tech-X; S. Shende, Paratools; S. Vadlamani, Tech-X; H. Zhang, ANL
 12:00-12:25 *A Multiscale Preconditioner for Nonlinear Multiphysics Problems in*

Porous Media, T. Wildey, U of Texas at Austin; M. Wheeler, UTA; Ivan Yotov, U of Pittsburgh

Thanks again to:

U.S. Department of Energy – Office of Science

Collaborators

- B. Smith, S. Balay, W. Gropp, D. Kaushik, D. Keyes, M. Knepley,
 H. Zhang and other PETSc contributors
- B. Norris, V. Bui, L. Li, R. Armstrong, D. Bernholdt and other TASCS collaborators
- Scientific applications teams, especially J. Cary, R. Katz, R. Mills,
 L. Pavarino, A. Pletzer, T. Rognlien

All PETSc users

Special thanks to James M. Ortega

Ph.D., Stanford University, 1962
 U of Maryland, Mathematics, 1964-1973
 Director and Founder, ICASE, 1973-1977
 Prof. and Head, Math, NC State, 1977-1979
 Charles Henderson Prof., UVA, 1979-1998

 Chair, Applied Math and CS, 1979-1984

- Associate Dean, Engineering, 1980-1982
- Chair, Applied Math, 1984-1989
- Director, Institute for Parallel Computation, 1990-1993
- Chair, Computer Science, 1993-1996
- Professor Emeritus, UVA, 1998-2008
- Directed 19 Ph.D. theses

Author/co-author of 9 books, 40+ papers

James M. Ortega, 1932-2008

Favorite saying: "Work hard and think smart."

Mark bard and think a