Functional maps + products $=\bigcirc$

Michael Bronstein

USI Lugano / Imperial College / Intel

SIAM AM, Portland, 13 July 2018

2005

\$100 2010

ㅁ.
\$20
2014

\$17
2017

Faceshift (acquired by Apple in 2015)

Pointwise correspondence

Point-wise map $t: \mathcal{X} \rightarrow \mathcal{Y}$

Functional correspondence

Functional map $T: L^{2}(\mathcal{X}) \rightarrow L^{2}(\mathcal{Y})$

Functional maps in spectral domain

Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas 2012

Functional maps in spectral domain

\square

$\mathbf{C}_{k \times k}$

$\mathbf{A}_{k \times q}=\left(\left\langle\phi_{i}, f_{j}\right\rangle_{\mathcal{X}}\right)$
where \mathbf{A}, \mathbf{B} are Fourier coefficients of corresponding 'probe' functions

$$
g_{i} \approx T f_{i} \quad i=1, \ldots, q \geq k
$$

Laplacian eigenbasis

For shapes with simple spectrum, Laplacian eigenfunctions are invariant (up to sign) to isometric deformations, $\psi_{i}= \pm T \phi_{i}$

Issues with functional maps

- Finding correspondence boils down to solving a linear problem

Issues with functional maps

- Finding correspondence boils down to solving a linear problem
- Hard to automatically compute many probe functions f_{i}, g_{i}

Issues with functional maps

- Finding correspondence boils down to solving a linear problem
- Hard to automatically compute many probe functions f_{i}, g_{i}
- Tradeoff between basis size k and number of probe functions q : larger k yields better approximation, but requires more probe functions to make the system determined

Issues with functional maps

- Finding correspondence boils down to solving a linear problem
- Hard to automatically compute many probe functions f_{i}, g_{i}
- Tradeoff between basis size k and number of probe functions q : larger k yields better approximation, but requires more probe functions to make the system determined
- Regularization accounting for the structure of \mathbf{C} (orthogonality, diagonality, etc.)

Issues with functional maps

- Finding correspondence boils down to solving a linear problem
- Hard to automatically compute many probe functions f_{i}, g_{i}
- Tradeoff between basis size k and number of probe functions q : larger k yields better approximation, but requires more probe functions to make the system determined
- Regularization accounting for the structure of \mathbf{C} (orthogonality, diagonality, etc.)
- Resulting map is not pointwise! Recovering a pointwise map from functional map is a hard problem!

Issues with functional maps

- Finding correspondence boils down to solving a linear problem
- Hard to automatically compute many probe functions f_{i}, g_{i}
- Tradeoff between basis size k and number of probe functions q : larger k yields better approximation, but requires more probe functions to make the system determined
- Regularization accounting for the structure of \mathbf{C} (orthogonality, diagonality, etc.)
- Resulting map is not pointwise! Recovering a pointwise map from functional map is a hard problem!
- Is Laplacian eigenbasis the best way to represent functional maps?

Pointwise maps $=$ product preserving maps

Theorem Functional map $T: L^{2}(\mathcal{X}) \rightarrow L^{2}(\mathcal{Y})$ is a pointwise map iff

$$
T(f \cdot h)=(T f) \cdot(T h)
$$

for all $f, h \in L^{2}(\mathcal{X})$

Kishor, Manhas 1993

Pointwise maps $=$ product preserving maps

Theorem Functional map $T: L^{2}(\mathcal{X}) \rightarrow L^{2}(\mathcal{Y})$ is a pointwise map iff

$$
T(f \cdot h)=(T f) \cdot(T h)
$$

for all $f, h \in L^{2}(\mathcal{X})$

Problem: we do not work with T but its truncated spectral representation C

Kishor, Manhas 1993

Pointwise maps $=$ product preserving maps

Theorem Functional map $T: L^{2}(\mathcal{X}) \rightarrow L^{2}(\mathcal{Y})$ is a pointwise map iff

$$
T(f \cdot h)=(T f) \cdot(T h)
$$

for all $f, h \in L^{2}(\mathcal{X})$

Problem: we do not work with T but its truncated spectral representation C

Solution: represent T in product bases

Pointwise maps $=$ product preserving maps

Theorem Functional map $T: L^{2}(\mathcal{X}) \rightarrow L^{2}(\mathcal{Y})$ is a pointwise map iff

$$
T(f \cdot h)=(T f) \cdot(T h)
$$

for all $f, h \in L^{2}(\mathcal{X})$

Problem: we do not work with T but its truncated spectral representation C

Solution: represent T in product bases

Kishor, Manhas 1993; Shtern, Kimmel 2013 (product-based pointwise descriptors)

Functional maps in product bases

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}
$$

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

- Adds higher frequency information

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

- Adds higher frequency information: for trigonometric bases 2nd order products max double the frequency since

$$
\left.\left.\cos (n x) \cdot \cos (m x)=\frac{1}{2}[\cos ((n+m) x))+\cos ((n-m) x)\right)\right]
$$

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

- Adds higher frequency information: for trigonometric bases 2nd order products max double the frequency since

$$
\left.\left.\cos (n x) \cdot \cos (m x)=\frac{1}{2}[\cos ((n+m) x))+\cos ((n-m) x)\right)\right]
$$

- Product basis is linearly dependent

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

- Adds higher frequency information: for trigonometric bases 2nd order products max double the frequency since

$$
\left.\left.\cos (n x) \cdot \cos (m x)=\frac{1}{2}[\cos ((n+m) x))+\cos ((n-m) x)\right)\right]
$$

- Product basis is linearly dependent
- Orthogonality is lost

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

- Adds higher frequency information: for trigonometric bases 2nd order products max double the frequency since

$$
\left.\left.\cos (n x) \cdot \cos (m x)=\frac{1}{2}[\cos ((n+m) x))+\cos ((n-m) x)\right)\right]
$$

- Product basis is linearly dependent
- Orthogonality is lost
- Higher orders r become unstable

Product basis

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{j=1}^{r} \tilde{a}_{j} \prod_{l=1}^{r_{j}} \phi_{i_{j l}} \quad i_{j l} \in\{1, \ldots, k\}
$$

- Adds higher frequency information: for trigonometric bases 2nd order products max double the frequency since

$$
\left.\left.\cos (n x) \cdot \cos (m x)=\frac{1}{2}[\cos ((n+m) x))+\cos ((n-m) x)\right)\right]
$$

- Product basis is linearly dependent
- Orthogonality is lost
- Higher orders r become unstable
- Finding optimal approximation that minimizes the number of products used is NP-hard

Example: 1D product basis

1D function approximation: standard vs product basis

Approximation of a step function (black) using standard (blue) and product (red) bases of order $r=2$

1D function approximation: standard vs product basis

Approximation of a step function (black) using standard (blue) and product (red) bases of order $r=2$

1D function approximation: standard vs product basis

Approximation of a step function (black) using standard (blue) and product (red) bases of order $r=2$

3D function approximation: standard vs product basis

Standard basis

Original

Approximation of the shape 3D coordinates in standard and product bases

3D function approximation: standard vs product basis

Reconstruction of the shape 3D coordinates using standard and product bases of different order $(k=20)$

Functional maps in product bases

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018

Functional maps in product bases

Functional maps in product bases

$$
f \approx \sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{i, j=1}^{k} \tilde{a}_{i j} \phi_{i} \cdot \phi_{j}
$$

Functional maps in product bases

$$
T f \approx T\left(\sum_{i=0}^{k} a_{i} \phi_{i}+\sum_{i, j=1}^{k} \tilde{a}_{i j} \phi_{i} \cdot \phi_{j}\right)
$$

Functional maps in product bases

$$
T f \approx \sum_{i=0}^{k} a_{i} T \phi_{i}+\sum_{i, j=1}^{k} \tilde{a}_{i j} T\left(\phi_{i} \cdot \phi_{j}\right)
$$

Functional maps in product bases

$$
T f \approx \sum_{i=0}^{k} a_{i} T \phi_{i}+\sum_{i, j=1}^{k} \tilde{a}_{i j} T\left(\phi_{i}\right) \cdot T\left(\phi_{j}\right)
$$

Functional maps in product bases

$$
T f \approx \sum_{i, j=0}^{k} a_{i} c_{i j} \psi_{j}+\sum_{i, j=1}^{k} \sum_{l, l^{\prime}=0}^{k} \tilde{a}_{i j} c_{i l} c_{i l^{\prime}} \psi_{l} \cdot \psi_{l^{\prime}}
$$

Functional maps in product bases

$$
T f \approx \sum_{i, j=0}^{k} a_{i} c_{i j} \psi_{j}+\sum_{i, j=1}^{k} \sum_{l, l^{\prime}=0}^{k} \tilde{a}_{i j} \underbrace{c_{i l} c_{i l^{\prime}}}_{\tilde{c}_{i j l l^{\prime}}} \psi_{l} \cdot \psi_{l^{\prime}}
$$

Structure of matrix $\tilde{\mathbf{C}}$

Nongeng, Melzi, Rodolà, Castellani, B, Ovsjanikov 2018

Structure of matrix $\tilde{\mathbf{C}}$

$$
\tilde{\mathbf{C}}(\mathbf{C})=\left[\begin{array}{cc}
\mathbf{C} & \phi_{00} \mathbf{c}_{0}^{\top} \otimes \mathbf{C}_{01}+\phi_{00}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{C}_{11}
\end{array}\right] \otimes \mathbf{c}_{0}^{\top} \\
\mathbf{C}_{11} \otimes \mathbf{C}_{11}
\end{array}\right]
$$

is matrix of size $\left(k^{2}+k+1\right) \times\left(k^{2}+k+1\right)$ expressed in terms of \mathbf{C}, and

$$
\mathbf{C}_{11}=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 k} \\
\vdots & \vdots & \vdots \\
c_{k 1} & \ldots & c_{k k}
\end{array}\right] \quad \mathbf{C}_{01}=\left[\begin{array}{ccc}
c_{01} & \ldots & c_{0 k} \\
\vdots & \vdots & \vdots \\
c_{k 1} & \ldots & c_{k k}
\end{array}\right] \quad \mathbf{c}_{0}^{\top}=\left[\begin{array}{lll}
c_{00} & \ldots & c_{0 k}
\end{array}\right]
$$

Structure of matrix $\tilde{\mathbf{C}}$

$$
\tilde{\mathbf{C}}(\mathbf{C})=\left[\begin{array}{cc}
\mathbf{C} & \phi_{00} \mathbf{c}_{0}^{\top} \otimes \mathbf{C}_{01}+\phi_{00}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{C}_{11}
\end{array}\right] \otimes \mathbf{c}_{0}^{\top} \\
\mathbf{C}_{11} \otimes \mathbf{C}_{11}
\end{array}\right]
$$

is matrix of size $\left(k^{2}+k+1\right) \times\left(k^{2}+k+1\right)$ expressed in terms of \mathbf{C}, and

$$
\mathbf{C}_{11}=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 k} \\
\vdots & \vdots & \vdots \\
c_{k 1} & \ldots & c_{k k}
\end{array}\right] \quad \mathbf{C}_{01}=\left[\begin{array}{ccc}
c_{01} & \ldots & c_{0 k} \\
\vdots & \vdots & \vdots \\
c_{k 1} & \ldots & c_{k k}
\end{array}\right] \quad \mathbf{c}_{0}^{\top}=\left[\begin{array}{lll}
c_{00} & \ldots & c_{0 k}
\end{array}\right]
$$

$\Rightarrow\left(k^{2}+k+1\right)^{2}$ coefficients, but only $(k+1)^{2}$ degrees of freedom!

Standard vs product bases

Function approximation and transfer error using standard and product bases

Example of correspondence on FAUST dataset

Source

Standard basis

Product basis

Correspondence (shown with matching colors) and correspondence error on SCAPE shapes using standard and product bases

Correspondence quality

Quality of functional maps computed with standard and product bases on FAUST (left) and TOSCA (right) shapes

Future directions

- Instead of improving a given functional map, finding pointwise functional maps by solving the non-linear problem

$$
\min _{\mathbf{C} \in \mathbb{R}^{k \times k}}\|\mathbf{B}-\tilde{\mathbf{C}}(\mathbf{C}) \mathbf{A}\|_{\mathrm{F}}^{2}
$$

Future directions

- Instead of improving a given functional map, finding pointwise functional maps by solving the non-linear problem

$$
\min _{\mathbf{C} \in \mathbb{R}^{k \times k}}\|\mathbf{B}-\tilde{\mathbf{C}}(\mathbf{C}) \mathbf{A}\|_{\mathrm{F}}^{2}
$$

- More general definition of products (potentially combined with learning)

Issues with functional maps

- Finding correspondence boils down to solving a linear problem
- Hard to automatically compute many probe functions f_{i}, g_{i}
- Tradeoff between basis size k and number of probe functions q : larger k yields better approximation, but requires more probe functions to make the system determined
- Regularization accounting for the structure of \mathbf{C} (orthogonality, diagonality, etc.)
- Resulting map is not pointwise! Recovering a pointwise map from functional map is a hard problem!
- Is Laplacian eigenbasis the best way to represent functional maps?

Functional maps in product spaces

Correspondence in the product space

Source

Target

Product manifold

Functional map $T_{\mu}: \mathcal{F}(\mathcal{M}) \rightarrow \mathcal{F}(\mathcal{N})$ associated with a density $\mu \in L^{1}(\mathcal{M} \times \mathcal{N})$ on the product manifold $\left(\mathcal{M} \times \mathcal{N}, g_{\mathcal{M}} \oplus g_{\mathcal{N}}\right)$

$$
T_{\mu}(g)(x)=\int_{\mathcal{N}} g(y) \mu(x, y) \mathrm{d} y
$$

Laplacian eigenbasis on product manifold

Theorem Let $\mathcal{M} \times \mathcal{N}$ be a product manifold and let

$$
\Delta_{\mathcal{M} \times \mathcal{N}} \xi=\gamma \xi
$$

Then, there exist ϕ, ψ and α, β s.t. $\Delta_{\mathcal{M}} \phi=\alpha \phi$ and $\Delta_{\mathcal{N}} \psi=\beta \psi$ and

$$
\gamma=\alpha+\beta \quad \xi=\phi \wedge \psi
$$

Laplacian eigenbasis on product manifold

Theorem Let $\mathcal{M} \times \mathcal{N}$ be a product manifold and let

$$
\Delta_{\mathcal{M} \times \mathcal{N}} \xi=\gamma \xi
$$

Then, there exist ϕ, ψ and α, β s.t. $\Delta_{\mathcal{M}} \phi=\alpha \phi$ and $\Delta_{\mathcal{N}} \psi=\beta \psi$ and

$$
\gamma=\alpha+\beta \quad \xi=\phi \wedge \psi
$$

Representation equivalence

Theorem Let $c_{i j}=\left\langle\phi_{i}, T_{\mu}\left(\psi_{j}\right)\right\rangle_{\mathcal{M}}$ be the representation of T_{μ} in orthogonal bases $\left\{\phi_{i}\right\}_{i \geq 1},\left\{\psi_{i}\right\}_{i \geq 1}$ and let $p_{i j}=\left\langle\phi_{i} \wedge \psi_{j}, \mu\right\rangle_{\mathcal{M} \times \mathcal{N}}$ such that $\mu=\sum_{i j}\left(\phi_{i} \wedge \psi_{j}\right) p_{i j}$. Then $c_{i j}=p_{i j}$ for all i, j.

Representation equivalence

Theorem Let $c_{i j}=\left\langle\phi_{i}, T_{\mu}\left(\psi_{j}\right)\right\rangle_{\mathcal{M}}$ be the representation of T_{μ} in orthogonal bases $\left\{\phi_{i}\right\}_{i \geq 1},\left\{\psi_{i}\right\}_{i \geq 1}$ and let $p_{i j}=\left\langle\phi_{i} \wedge \psi_{j}, \mu\right\rangle_{\mathcal{M} \times \mathcal{N}}$ such that $\mu=\sum_{i j}\left(\phi_{i} \wedge \psi_{j}\right) p_{i j}$. Then $c_{i j}=p_{i j}$ for all i, j.

Rodolà, Lähner, BB, Solomon 2018

Representation efficiency

$$
\mu=\sum_{\ell=0}^{k} p_{\ell} \xi_{\ell}
$$

Rodolà, Lähner, BB, Solomon 2018

Representation efficiency

$$
\mu=\sum_{\ell=0}^{k} p_{\ell} \xi_{\ell}
$$

Non-separable localized basis

Eigenfunctions of the Hamiltonian operator $H=\Delta_{\mathcal{M} \times \mathcal{N}}+V$, where V is the localization potential

Rodolà, Lähner, BB, Solomon 2018; Choukroun et al. 2017; Melzi, Rodolà, Castellani, B 2017

Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in separable basis. Groundtruth correspondence shown in black.

Rodolà, Lähner, BB, Solomon 2018

Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in localized basis (90\% area). Groundtruth correspondence shown in black.

Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in localized basis (25\% area). Groundtruth correspondence shown in black.

Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in localized basis (5\% area). Groundtruth correspondence shown in black.

Example: 1D correspondence

Source

Delta function transfer using functional map on the product space computed in localized basis ($\mathbf{1 \%}$ area). Groundtruth correspondence shown in black.

Example: 1D correspondence

Quality of correspondence on product manifold using different basis localization

Example: 2D correspondence

Source

Target

Delta function transfer using functional map on the product space computed in separable basis.

Example: 2D correspondence

Source

Target

Delta function transfer using functional map on the product space computed in localized basis (15\% area).

Example: 2D correspondence

Source

Target

Delta function transfer using functional map on the product space computed in localized basis (10\% area).

Example: 2D correspondence

Quality of correspondence on product manifold using different basis localization

Two completely different uses of products yield novel and interesting representations of functional maps and shed new light on old problems

Functional maps + products $=\bigcirc$

E. Rodolà SAPIENZA UNIVERSITA DI ROMA

M. Ovsjanikov D. Nogneng

U. Castellani
S. Melzi

A. Bronstein

Thechnion
Technion

With the generous support of

Thank you!

