Faster Kernel Ridge Regression Using
Sketching and Preconditioning

Haim Avron
Department of Applied Math
Tel Aviv Unwversity, Israel

SIAM CS&E 2017
February 27, 2017

Brief Introduction to Kernel Ridge Regression

Input domain: X < R?, Output domain:) < R.
Non-deterministic dependency of output y €) on input x € X'.

We are given n samples: {(x;,y;)}l"{ <€ X x V.
Goal: try to infer the connection between output and input.

Regularized least-squares approach:

argmin~ 3 (s — £(x))? + AIfI2,

feH N o1

where H is an hypothesis space of functions.

Brief Introduction to Kernel Ridge Regression

e Define a symmetric positive definite kernel function: k : XA x X — R

Examples:

— Polynomial Kernel: k(x,z) = (x'z + ¢)¢
— Gaussian Kernel: k(x,z) = exp(—||x — z|3/0?)

e k defines an Hilbert space H of functions from X to R:

Hy = {Zaik(zi,-) | z;e X, a; € R, meZ+}
i=1

o Use H = H;.

Brief Introduction to Kernel Ridge Regression

e Representer theorem: the solution has the form

f*<x) — Z;'ll &’ik(xi) X)
o Let K € R™" be the kernel matriz: K;; = k(x;,%;)

" are the solution to

e The optimal coefficients a = (a1, ..., ap)
: 2 T
arg min ||y — Ka|3 + Ana” Ka
acR™
Equalize the gradient to 0 to find that the solution satisfies

(K+ Anl)a =y.

Problem reduces to solving a dense linear system!

Example Use (Advertisement)

e Consider a mis-specified model:

%y(t) — G(y(1)) + Fly(t))

where (G is known and F' is unknown.

e Can recover F' from measurements of y using kernel ridge regression.

e See talk on Friday in MS326 (Friday, 11:45-12:05).

Main Limiting Factor: Scalability

e Kernel ridge regression:
O(n?) storage

(K+MDa=y O(m°+mn?d) training
O(nd) test speed

e Too expensive if n is even moderately big!

The Random Features Method

e Approximate low-dimensional feature map ¢ : R — R® such that

k(x,2z) ~ p(x)" ¢(2)

o Use k(x,2) = ¢(x)T¢(z) as a substitute kernel.

o Z =[p(x1)...0(x,)]" and w = ZTa, we have f*(x) = wl¢(x) and

(v)= (%)

Obviously, we want small s and good approx. to k (in some sense).

O(ns) storage
O(ns?) training
2 O(s + maptime) test speed

W = arg min

Random Fourier Features (Rahimi and Recht 2007)

e Shift-Invariant kernels:
k(Xa Z) — ¢(X o Z)7
for some positive definite function b on R,

e A consequence of Bochner's theorem (1932-1933): If k is shift-invariant
there exist a probability distribution p(-) such that

1 2T
k(x,z) = oy JRdJo cos(x?w + b) cos(z’ w + b)p(w)dbdw

Jx—2|3
o Gaussian kernel: k(x,z) =e 22 <= p =N (0,07 %1,).

Random Fourier Features (Rahimi and Recht 2007)

e Main idea: the integral can be approximated via Monte-Carlo.

e Draw wy,...,ws ~ p(:) and by,...,bs ~ U(0,27). Now,

1 S
k(x,z) ~ . Z cos(x’w; + b;) cos(z’' w; + b;)
j=1

e This defines the feature map:

1
p(x) = 7 [cos(wix +by)...cos(wix + bs)]T e R® .

The Success of Random Fourier Features

Example on a Speech Recognition Dataset

1 TIMIT: n = 2M,d = 440, k = 147
1 —— DNN (440-4k-4k-147)
1
401 " - == RandomFourier
2 'l —— Exact Kernel (n=100k, 75GB)
1>
= 39}
S 1
g T
=38F
= \
Q \
©37r
= \
& .
Q L
= 36 \\
opm| \
2 e
® 30 ~ao
| RS ~
@) R . a0
34 ________ P _E.R_ 2_1;3/: <_ Q_QEL%_(DNN)
33

0 5 10 15 20 25 30 35 40
Number of Random Features (s) / 10000

How do you learn with so many features (400K!!!) 7

Scalable Kernel Learning Using Random Features:

ADMM+Implicit Distributed Optimization

cccccc s/OpenMP-threads

Ny

Y1, Xy 1 Z12 Z13
Y

W11 W12 W13 node 0
node 2
Yo, Xo Za1 Z22 Za3

W3 W3o W33 node 0
node 3 A A A
Y3, X3 Z31 Z32 Z33

T-cores /OpenMP-threads

Avron and Sindhwani, High-Performance Kernel Machines With Implicit Distributed
Optimization and Randomization”, Technometrics 638 (3) 2016

10

Error Rate (%)

—_ NN
o o N oMo

—
N
o

The Price for Scalability?

MNIST - Polynomial Kernel

—— Proposed Algorithm

—x— Random Features Method |

10 20 30 40
Random Features (% data size)

50

MNIST - Gaussian Kernel

—— Proposed Algorithm
28" —— Random Features Method

20 40 60 80 100
Random Features (% data size)

11

Error Rate (%)

Is It Really Scalable?

—_
oo

—_
D

—
~

—_
\}

MNIST - Gaussian Kernel 14 COVTYPE - Gaussian Kernel
P —+— Proposed Algorithm P —+— Proposed Algorithm
\ ——s = 0.2n ——s = 0.2n
—4— s = 2.26v/nd —a— s = 2.26v/nd
s = 20K . 12+ s = 20K
g
| 90t
0}
T
o
| § 8L
L
1 . 6+
8 I I I 4 I +
100 200 300 400 500 20 40 60 80 100

Data Size / 1000 % Data Size

A Better Use for Approximation: Preconditioning

Main ldea: Use random features to accelerate the solution of the linear
system, not to approximate it.

Let Z = [p(x1) ... o(x,)]". We have

K~Z77".

So, for A > 0: K + \nl,, ~ ZZ* + \nl, ..

— And the approximation improves as A gets larger.

We can use ZZ'! + \nl, to solve (K + \nl,)a = y faster!

13

Random Features Preconditioning
e Use ZZ' + A\nl, as a preconditioner for (K + \nl,)a = y.

e Efficiently applying the preconditioner is easy since:

(ZZ" + L)t = n A1, - Z(Z7Z + Mnl,) 127
- o 'AY(I,-U'U)

where LLT = ZTZ + MnI, and U = L~ 1Z7T.

o Cost: O (n32 +n?-\/6((ZZT + MnL,) 1 (K +)\nIn))>

(s - number of random features, n - data-points, d - data dimension)

e How big should s be?

14

Theoretical Results

O(A 1log(1/X)) random Fourier features suffice.
Analysis is via matrix concentration inequalities.

Statistical learning theory says that A should grow with n~!, but a
slower rate, so there is a provable gain.

The bound is tight even for one dimensional datasets.
This can be shown using Fourier analysis.

Using a modified random Fourier features, can replace A\~! with
sx(K) = Tr((K + Mnl,) 'K)

(" statistical dimension”). Grows much slower with n than A71.

15

Additional Results, Not Discussed Here
(only a 20 minute talk!)

e Tight analysis for the polynomial kernel.
e Further dimensionality reduction using Randomized NLA.

e Testing preconditioners and adaptively setting their size.

16

Error Rate (%)

o oo NN

—
~

Experimental Results -
Comparison to Random Features (fixed size dataset)

MNIST - Polynomial Kernel

—— Proposed Algorithm

—— Random Features Method |

o

10 20 30 40
Random Features (% data size)

50

MNIST - Gaussian Kernel

—— Proposed Algorithm
28- —»— Random Features Method | |

0 20 40 60 80
Random Features (% data size)

100

17

Experimental Results -

Comparison to Random Features (growing dataset)

18 MNIST - Gaussian Kernel
. P —+— Proposed Algorithm
\ —x—s = 0.2n
—4—s = 2.26v/nd
1.6 1) s = 20K
S
—14+
»
©
oC
S1.2!
L] -
1L
0.8 ! ‘ ‘
0 1000 2000 3000
Time (s)

4000

Error Rate (%)

14 COVTYPE - Gaussian Kernel
5 —+— Proposed Algorithm
—»—s = 0.2n
' —— 5 =2.26Vnd
12 1§ s = 20K
10 -
8l
6
4 L L T
0 2000 4000 6000
Time (s)

8000

18

Training High Quality Models on Cloud Based Clusters

Experimental Results -

Dataset n d Resources s Running Time (sec) Error Rate
GISETTE 6,000 5,000 1 c4.large 500 8.1 3.50%
ADULT 32,561 123 1 c4.4xlarge 5,000 19.8 14.99%
IJCNN1 49,990 22 1 c4.8xlarge 10,000 55.5 1.39%
MNIST 60,000 780 1 c4.8xlarge 10,000 76.3 1.33%
MNIST-400K 400,000 780 8 r3.8xlarge 40,000 1060 0.89%
MNIST-1M 1,000,000 780 42 r3.8xlarge 40,000 1210 0.72%
EPSILON 400,000 2,000 8 r3.8xlarge 10,000 469 10.21%
COVTYPE 464,809 54 8 r3.8xlarge 40,000 2960 4.13%
YEARMSD 463,715 90 8 r3.8xlarge 15,000 312 4.58 x 1075

19

Comparison to a Scalable ADMM Based Solver

Experimental Results -

Dataset Resources ADMM - s ADMM - time ADMM - error Precond - time Precond - error
MNIST 1 c4.8xlarge 15,000 102 1.95% 76.3 1.33%
MNIST-400K 8 r3.8xlarge 100,000 1017 1.10% 1060 0.89%
EPSILON 8 r3.8xlarge 100,000 1823 11.58% 469 10.21%
COVTYPE 8 r3.8xlarge 115,000 6640 5.73% 2960 4.13%
YEARMSD 8 r3.8xlarge 115,000 958 5.01 x 10~ ° 312 4.58 x 10~ °

20

Summary and Limitations

e Summary:

— Theoretically, usually running time is between O(n?) and O(n?).
— Empirically, it often behaves like O(n?).
— Simple and as such parallelizes well even on cloud platforms.

Highly effective on datasets with as many as one million training
examples.

e Limitations:

— O(n?) memory usage - blows up memory usage quickly.
— Many parameters, large prediction time.

21

Thank You!

Acknowledgments:
e Co-authors:

— Random Features Preconditioning: Ken Clarkson, David Woodruff.
— Other paper mentioned: Po-Sen Huang, Michael Kapralov, Cameron
Musco, Christoper Musco, Huy Nguyen, Bhuvana Ramabhadran,
Tara N. Sainath, Vikas Sindhwani, Ameya Velingker, Amir Zandieh.

e Funding: XDATA program of the Defense Advanced Research Projects
Agency (DARPA), administered through Air Force Research Laboratory
contract FA8750-12-C-0323.

22

