Faster Kernel Ridge Regression Using Sketching and Preconditioning

Haim Avron Department of Applied Math Tel Aviv University, Israel

> **SIAM CS&E 2017** February 27, 2017

Brief Introduction to Kernel Ridge Regression

- Input domain: $\mathcal{X} \subseteq \mathbb{R}^d$, Output domain: $\mathcal{Y} \subseteq \mathbb{R}$. Non-deterministic dependency of output $y \in \mathcal{Y}$ on input $\mathbf{x} \in \mathcal{X}$.
- We are given n samples: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$.
- Goal: try to infer the connection between output and input.
- Regularized least-squares approach:

$$\arg\min_{f\in\mathcal{H}}\frac{1}{n}\sum_{i=1}^{n}(y_i-f(\mathbf{x}_i))^2+\lambda\|f\|_{\mathcal{H}}^2$$

where ${\cal H}$ is an hypothesis space of functions.

Brief Introduction to Kernel Ridge Regression

- Define a symmetric positive definite *kernel* function: k : X × X → ℝ
 Examples:
 - Polynomial Kernel: $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z} + c)^q$
 - Gaussian Kernel: $k(\mathbf{x}, \mathbf{z}) = \exp(-\|\mathbf{x} \mathbf{z}\|_2^2 / \sigma^2)$
- k defines an Hilbert space \mathcal{H}_k of functions from \mathcal{X} to \mathbb{R} :

$$\mathcal{H}_{k} = \left\{ \sum_{i=1}^{m} \alpha_{i} k(\mathbf{z}_{i}, \cdot) \mid \mathbf{z}_{i} \in \mathcal{X}, \, \alpha_{i} \in \mathbb{R}, \, m \in \mathbb{Z}_{+} \right\}$$

• Use $\mathcal{H} = \mathcal{H}_k$.

Brief Introduction to Kernel Ridge Regression

- Representer theorem: the solution has the form $f^{\star}(x) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$
- Let $\mathbf{K} \in \mathbb{R}^{n \times n}$ be the *kernel matrix*: $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$
- The optimal coefficients $\alpha = (\alpha_1, \dots, \alpha_n)^T$ are the solution to

$$\arg\min_{\alpha\in\mathbb{R}^n} \|\mathbf{y}-\mathbf{K}\alpha\|_2^2 + \lambda n\alpha^T \mathbf{K}\alpha$$

Equalize the gradient to 0 to find that the solution satisfies

$$(\mathbf{K} + \lambda n \mathbf{I})\alpha = \mathbf{y}.$$

Problem reduces to solving a dense linear system!

Example Use (Advertisement)

• Consider a mis-specified model:

$$\frac{d}{dt}\mathbf{y}(t) = G(\mathbf{y}(t)) + F(\mathbf{y}(t))$$

where G is known and F is unknown.

- Can recover F from measurements of y using kernel ridge regression.
- See talk on Friday in MS326 (Friday, 11:45-12:05).

Main Limiting Factor: Scalability

• Kernel ridge regression:

$$\begin{aligned} & (\mathbf{K} + \lambda n \mathbf{I}) \boldsymbol{\alpha} = \mathbf{y} & \begin{array}{c} O(n^2) & \text{storage} \\ O(n^3 + n^2 d) & \text{training} \\ O(nd) & \text{test speed} \end{aligned}$$

• Too expensive if n is even moderately big!

The Random Features Method

• Approximate low-dimensional feature map $\varphi : \mathbb{R}^d \to \mathbb{R}^s$ such that

$$k(\mathbf{x}, \mathbf{z}) \approx \varphi(\mathbf{x})^T \varphi(\mathbf{z})$$

• Use $\tilde{k}(\mathbf{x}, \mathbf{z}) = \varphi(\mathbf{x})^T \varphi(\mathbf{z})$ as a substitute kernel.

•
$$\mathbf{Z} = [\varphi(\mathbf{x}_1) \dots \varphi(\mathbf{x}_n)]^T$$
 and $\mathbf{w} = \mathbf{Z}^T \alpha$, we have $f^*(\mathbf{x}) = \mathbf{w}^T \varphi(\mathbf{x})$ and

$$\mathbf{w} = \arg\min \left\| \begin{pmatrix} \mathbf{Z} \\ \sqrt{n\lambda} \mathbf{I} \end{pmatrix} \mathbf{w} - \begin{pmatrix} \mathbf{y} \\ 0 \end{pmatrix} \right\|_2 \quad \begin{array}{c} O(ns) & \text{storage} \\ O(ns^2) & \text{training} \\ O(s + maptime) & \text{test speed} \end{array} \right\|_2$$

Obviously, we want small s and good approx. to k (in some sense).

Random Fourier Features (Rahimi and Recht 2007)

• Shift-Invariant kernels:

$$k(\mathbf{x}, \mathbf{z}) = \psi(\mathbf{x} - \mathbf{z}),$$

for some *positive definite function* ψ on \mathbb{R}^d .

• A consequence of Bochner's theorem (1932-1933): If k is shift-invariant there exist a probability distribution $p(\cdot)$ such that

$$k(\mathbf{x}, \mathbf{z}) = \frac{1}{2\pi} \int_{\mathbb{R}^d} \int_0^{2\pi} \cos(\mathbf{x}^T \mathbf{w} + b) \cos(\mathbf{z}^T \mathbf{w} + b) p(\mathbf{w}) db d\mathbf{w}$$

• Gaussian kernel: $k(\mathbf{x}, \mathbf{z}) = e^{-\frac{\|\mathbf{x}-\mathbf{z}\|_2^2}{2\sigma^2}} \iff p = \mathcal{N}(0, \sigma^{-2}\mathbf{I}_d).$

Random Fourier Features (Rahimi and Recht 2007)

- Main idea: the integral can be approximated via Monte-Carlo.
- Draw $\mathbf{w}_1, \ldots, \mathbf{w}_s \sim p(\cdot)$ and $b_1, \ldots, b_s \sim U(0, 2\pi)$. Now,

$$k(\mathbf{x}, \mathbf{z}) \approx \frac{1}{s} \sum_{j=1}^{s} \cos(\mathbf{x}^T \mathbf{w}_j + b_j) \cos(\mathbf{z}^T \mathbf{w}_j + b_j)$$

• This defines the feature map:

$$\varphi(\mathbf{x}) \equiv \frac{1}{\sqrt{s}} \left[\cos(\mathbf{w}_1^T \mathbf{x} + b_1) \dots \cos(\mathbf{w}_s^T \mathbf{x} + b_s) \right]^T \in \mathbb{R}^s$$

The Success of Random Fourier Features

Example on a Speech Recognition Dataset

How do you learn with so many features (400K!!!) ?

Scalable Kernel Learning Using Random Features: ADMM+Implicit Distributed Optimization

Avron and Sindhwani, High-Performance Kernel Machines With Implicit Distributed Optimization and Randomization", Technometrics 68 (3) 2016

The Price for Scalability?

Is It Really Scalable?

A Better Use for Approximation: Preconditioning

• Main Idea: Use random features to accelerate the solution of the linear system, not to approximate it.

• Let
$$\mathbf{Z} = [\varphi(\mathbf{x}_1) \dots \varphi(\mathbf{x}_n)]^T$$
. We have

 $\mathbf{K} \approx \mathbf{Z}\mathbf{Z}^T$.

• So, for $\lambda \ge 0$: $\mathbf{K} + \lambda n \mathbf{I}_n \approx \mathbf{Z} \mathbf{Z}^T + \lambda n \mathbf{I}_n ..$

– And the approximation improves as λ gets larger.

• We can use $\mathbf{Z}\mathbf{Z}^T + \lambda n\mathbf{I}_n$ to solve $(\mathbf{K} + \lambda n\mathbf{I}_n)\alpha = \mathbf{y}$ faster!

Random Features Preconditioning

• Use $\mathbf{Z}\mathbf{Z}^T + \lambda n\mathbf{I}_n$ as a preconditioner for $(\mathbf{K} + \lambda n\mathbf{I}_n)\alpha = \mathbf{y}$.

• Efficiently applying the preconditioner is easy since:

$$(\mathbf{Z}\mathbf{Z}^T + \lambda n\mathbf{I}_n)^{-1} = n^{-1}\lambda^{-1}(\mathbf{I}_n - \mathbf{Z}(\mathbf{Z}^T\mathbf{Z} + \lambda n\mathbf{I}_n)^{-1}\mathbf{Z}^T)$$
$$= n^{-1}\lambda^{-1}(\mathbf{I}_n - \mathbf{U}^T\mathbf{U})$$

where $\mathbf{L}\mathbf{L}^T = \mathbf{Z}^T\mathbf{Z} + \lambda n\mathbf{I}_s$ and $\mathbf{U} = \mathbf{L}^{-T}\mathbf{Z}^T$.

- Cost: $O\left(ns^2 + n^2 \cdot \sqrt{\kappa((\mathbf{Z}\mathbf{Z}^T + \lambda n\mathbf{I}_n)^{-1}(\mathbf{K} + \lambda n\mathbf{I}_n))}\right)$ (*s* - number of random features, *n* - data-points, *d* - data dimension)
- How big should s be?

Theoretical Results

- $O(\lambda^{-1}\log(1/\lambda))$ random Fourier features suffice. Analysis is via matrix concentration inequalities.
- Statistical learning theory says that λ should grow with n^{-1} , but a slower rate, so there is a provable gain.
- The bound is tight even for one dimensional datasets. This can be shown using Fourier analysis.
- Using a modified random Fourier features, can replace λ^{-1} with

$$s_{\lambda}(\mathbf{K}) \equiv \mathbf{Tr}((\mathbf{K} + \lambda n \mathbf{I}_n)^{-1} \mathbf{K})$$

("statistical dimension"). Grows much slower with n than λ^{-1} .

Additional Results, Not Discussed Here (only a 20 minute talk!)

- Tight analysis for the polynomial kernel.
- Further dimensionality reduction using Randomized NLA.
- Testing preconditioners and adaptively setting their size.

Experimental Results -Comparison to Random Features (fixed size dataset)

Experimental Results -Comparison to Random Features (growing dataset)

Experimental Results ng High Quality Models on Cloud Based (

Training High Quality Models on Cloud Based Clusters

Dataset	n	a	Resources	S	Running Time (sec)	Error Rate
GISETTE	6,000	5,000	1 c4.large	500	8.1	3.50%
ADULT	32,561	123	1 c4.4xlarge	5,000	19.8	14.99%
IJCNN1	49,990	22	1 c4.8xlarge	10,000	55.5	1.39%
MNIST	60,000	780	1 c4.8xlarge	10,000	76.3	1.33%
MNIST-400K	400,000	780	8 r3.8xlarge	40,000	1060	0.89%
MNIST-1M	1,000,000	780	42 r3.8xlarge	40,000	1210	0.72%
EPSILON	400,000	2,000	8 r3.8xlarge	10,000	469	10.21%
COVTYPE	464,809	54	8 r3.8xlarge	40,000	2960	4.13%
YEARMSD	463,715	90	8 r3.8xlarge	15,000	312	4.58×10^{-3}

Experimental Results -Comparison to a Scalable ADMM Based Solver

Dataset	Resources	ADMM - s	ADMM - time	ADMM - error	Precond - time	Precond - error
MNIST	1 c4.8×large	15,000	102	1.95%	76.3	1.33%
MNIST-400K	8 r3.8xlarge	100,000	1017	1.10%	1060	0.89%
EPSILON	8 r3.8xlarge	100,000	1823	11.58%	469	10.21%
COVTYPE	8 r3.8xlarge	115,000	6640	5.73%	2960	4.13%
YEARMSD	8 r3.8xlarge	115,000	958	$5.01 imes 10^{-3}$	312	4.58×10^{-3}

Summary and Limitations

- Summary:
 - Theoretically, usually running time is between $O(n^2)$ and $O(n^3)$.
 - Empirically, it often behaves like $O(n^2)$.
 - Simple and as such parallelizes well even on cloud platforms.

Highly effective on datasets with as many as one million training examples.

- Limitations:
 - $O(n^2)$ memory usage blows up memory usage quickly.
 - Many parameters, large prediction time.

Thank You!

Acknowledgments:

- Co-authors:
 - Random Features Preconditioning: Ken Clarkson, David Woodruff.
 - Other paper mentioned: Po-Sen Huang, Michael Kapralov, Cameron Musco, Christoper Musco, Huy Nguyen, Bhuvana Ramabhadran, Tara N. Sainath, Vikas Sindhwani, Ameya Velingker, Amir Zandieh.
- Funding: XDATA program of the Defense Advanced Research Projects Agency (DARPA), administered through Air Force Research Laboratory contract FA8750-12-C-0323.