
Faster Kernel Ridge Regression Using
Sketching and Preconditioning

Haim Avron
Department of Applied Math
Tel Aviv University, Israel

SIAM CS&E 2017
February 27, 2017

Brief Introduction to Kernel Ridge Regression

‚ Input domain: X Ď Rd, Output domain: Y Ď R.
Non-deterministic dependency of output y P Y on input x P X .

‚ We are given n samples: tpxi, yiqu
n
i“1 Ď X ˆ Y.

‚ Goal: try to infer the connection between output and input.

‚ Regularized least-squares approach:

argmin
fPH

1

n

n
ÿ

i“1

pyi ´ fpxiqq
2
` λ}f}2H

where H is an hypothesis space of functions.

1

Brief Introduction to Kernel Ridge Regression

‚ Define a symmetric positive definite kernel function: k : X ˆ X ÝÑ R
Examples:

– Polynomial Kernel: kpx, zq “ pxTz` cqq

– Gaussian Kernel: kpx, zq “ expp´}x´ z}22{σ
2q

‚ k defines an Hilbert space Hk of functions from X to R:

Hk “

#

m
ÿ

i“1

αikpzi, ¨q | zi P X , αi P R, m P Z`

+

‚ Use H “ Hk.

2

Brief Introduction to Kernel Ridge Regression

‚ Representer theorem: the solution has the form
f ‹pxq “

řn
i“1αikpxi,xq

‚ Let K P Rnˆn be the kernel matrix: Kij “ kpxi,xjq

‚ The optimal coefficients α “ pα1, . . . , αnq
T are the solution to

arg min
αPRn

}y ´Kα}22 ` λnα
TKα

Equalize the gradient to 0 to find that the solution satisfies

pK` λnIqα “ y.

Problem reduces to solving a dense linear system!

3

Example Use (Advertisement)

‚ Consider a mis-specified model:

d

dt
yptq “ Gpyptqq ` F pyptqq

where G is known and F is unknown.

‚ Can recover F from measurements of y using kernel ridge regression.

‚ See talk on Friday in MS326 (Friday, 11:45-12:05).

4

Main Limiting Factor: Scalability

‚ Kernel ridge regression:

pK` λnIqα “ y
Opn2q storage

Opn3 ` n2dq training
Opndq test speed

‚ Too expensive if n is even moderately big!

5

The Random Features Method

‚ Approximate low-dimensional feature map ϕ : Rd Ñ Rs such that

kpx, zq « ϕpxqTϕpzq

‚ Use k̃px, zq “ ϕpxqTϕpzq as a substitute kernel.

‚ Z “ rϕpx1q . . . ϕpxnqs
T and w “ ZTα, we have f ‹pxq “ wTϕpxq and

w “ argmin

›

›

›

›

ˆ

Z
?
nλI

˙

w ´

ˆ

y
0

˙
›

›

›

›

2

Opnsq storage
Opns2q training

Ops`maptimeq test speed

Obviously, we want small s and good approx. to k (in some sense).

6

Random Fourier Features (Rahimi and Recht 2007)

‚ Shift-Invariant kernels:

kpx, zq “ ψpx´ zq,

for some positive definite function ψ on Rd.

‚ A consequence of Bochner’s theorem (1932-1933): If k is shift-invariant
there exist a probability distribution pp¨q such that

kpx, zq “
1

2π

ż

Rd

ż 2π

0

cospxTw ` bq cospzTw ` bqppwqdbdw

‚ Gaussian kernel: kpx, zq “ e
´
}x´z}22
2σ2 ðñ p “ N p0, σ´2Idq.

7

Random Fourier Features (Rahimi and Recht 2007)

‚ Main idea: the integral can be approximated via Monte-Carlo.

‚ Draw w1, . . . ,ws „ pp¨q and b1, . . . , bs „ Up0, 2πq. Now,

kpx, zq «
1

s

s
ÿ

j“1

cospxTwj ` bjq cospz
Twj ` bjq

‚ This defines the feature map:

ϕpxq ”
1
?
s

“

cospwT
1 x` b1q . . . cospw

T
s x` bsq

‰T
P Rs .

8

The Success of Random Fourier Features
Example on a Speech Recognition Dataset

0 5 10 15 20 25 30 35 40
Number of Random Features (s) / 10000

33

34

35

36

37

38

39

40

41

C
la

ss
ifi

ca
ti

on
E

rr
or

(%
)

PER: 21.3% < 22.3% (DNN)

TIMIT: n = 2M,d = 440, k = 147

DNN (440-4k-4k-147)
RandomFourier
Exact Kernel (n=100k, 75GB)

How do you learn with so many features (400K!!!) ?

9

Scalable Kernel Learning Using Random Features:
ADMM+Implicit Distributed Optimization

Y1, X1

Y2, X2

Y3, X3

node 1

node 2

node 3

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

T[X1, 2]

T[X3, 2]

T-cores/OpenMP-threads

MPI (rank 1)

proxl

T-cores/OpenMP-threads

MPI (rank 3)

W11 W12 W13

W31 W32 W33

projZij
(·)

W̄

W

node 0

node 0

reduce

reduce

proxr(·)

broadcast

broadcast

1

Avron and Sindhwani, High-Performance Kernel Machines With Implicit Distributed

Optimization and Randomization”, Technometrics 68 (3) 2016

10

The Price for Scalability?

0 10 20 30 40 50
Random Features (% data size)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
rr

o
r

R
a

te
 (

%
)

MNIST - Polynomial Kernel

Proposed Algorithm
Random Features Method

0 20 40 60 80 100
Random Features (% data size)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
rr

o
r

R
a

te
 (

%
)

MNIST - Gaussian Kernel

Proposed Algorithm
Random Features Method

11

Is It Really Scalable?

100 200 300 400 500
Data Size / 1000

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r

R
a

te
 (

%
)

MNIST - Gaussian Kernel

Proposed Algorithm

s = 0.2n

s = 2.26
√

nd

s = 20K

20 40 60 80 100
% Data Size

4

6

8

10

12

14

E
rr

o
r

R
a

te
 (

%
)

COVTYPE - Gaussian Kernel

Proposed Algorithm

s = 0.2n

s = 2.26
√

nd

s = 20K

12

A Better Use for Approximation: Preconditioning

‚ Main Idea: Use random features to accelerate the solution of the linear
system, not to approximate it.

‚ Let Z “ rϕpx1q . . . ϕpxnqs
T . We have

K « ZZT .

‚ So, for λ ě 0: K` λnIn « ZZT ` λnIn ..

– And the approximation improves as λ gets larger.

‚ We can use ZZT ` λnIn to solve pK` λnInqα “ y faster!

13

Random Features Preconditioning

‚ Use ZZT ` λnIn as a preconditioner for pK` λnInqα “ y.

‚ Efficiently applying the preconditioner is easy since:

pZZT ` λnInq
´1

“ n´1λ´1pIn ´ ZpZTZ` λnInq
´1ZT q

“ n´1λ´1pIn ´UTUq

where LLT “ ZTZ` λnIs and U “ L´TZT .

‚ Cost: O
´

ns2 ` n2 ¨
a

κppZZT ` λnInq´1pK` λnInqq
¯

(s - number of random features, n - data-points, d - data dimension)

‚ How big should s be?

14

Theoretical Results

‚ Opλ´1 logp1{λqq random Fourier features suffice.
Analysis is via matrix concentration inequalities.

‚ Statistical learning theory says that λ should grow with n´1, but a
slower rate, so there is a provable gain.

‚ The bound is tight even for one dimensional datasets.
This can be shown using Fourier analysis.

‚ Using a modified random Fourier features, can replace λ´1 with

sλpKq ” TrppK` λnInq
´1Kq

(”statistical dimension”). Grows much slower with n than λ´1.

15

Additional Results, Not Discussed Here
(only a 20 minute talk!)

‚ Tight analysis for the polynomial kernel.

‚ Further dimensionality reduction using Randomized NLA.

‚ Testing preconditioners and adaptively setting their size.

16

Experimental Results -
Comparison to Random Features (fixed size dataset)

0 10 20 30 40 50
Random Features (% data size)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
rr

o
r

R
a

te
 (

%
)

MNIST - Polynomial Kernel

Proposed Algorithm
Random Features Method

0 20 40 60 80 100
Random Features (% data size)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

E
rr

o
r

R
a

te
 (

%
)

MNIST - Gaussian Kernel

Proposed Algorithm
Random Features Method

17

Experimental Results -
Comparison to Random Features (growing dataset)

0 1000 2000 3000 4000
Time (s)

0.8

1

1.2

1.4

1.6

1.8

E
rr

o
r

R
a

te
 (

%
)

MNIST - Gaussian Kernel

Proposed Algorithm

s = 0.2n

s = 2.26
√

nd

s = 20K

0 2000 4000 6000 8000
Time (s)

4

6

8

10

12

14

E
rr

o
r

R
a

te
 (

%
)

COVTYPE - Gaussian Kernel

Proposed Algorithm

s = 0.2n

s = 2.26
√

nd

s = 20K

18

Experimental Results -
Training High Quality Models on Cloud Based Clusters

Dataset n d Resources s Running Time (sec) Error Rate

GISETTE 6,000 5,000 1 c4.large 500 8.1 3.50%

ADULT 32,561 123 1 c4.4xlarge 5,000 19.8 14.99%

IJCNN1 49,990 22 1 c4.8xlarge 10,000 55.5 1.39%

MNIST 60,000 780 1 c4.8xlarge 10,000 76.3 1.33%

MNIST-400K 400,000 780 8 r3.8xlarge 40,000 1060 0.89%

MNIST-1M 1,000,000 780 42 r3.8xlarge 40,000 1210 0.72%

EPSILON 400,000 2,000 8 r3.8xlarge 10,000 469 10.21%

COVTYPE 464,809 54 8 r3.8xlarge 40,000 2960 4.13%

YEARMSD 463,715 90 8 r3.8xlarge 15,000 312 4.58 ˆ 10´3

19

Experimental Results -
Comparison to a Scalable ADMM Based Solver

Dataset Resources ADMM - s ADMM - time ADMM - error Precond - time Precond - error

MNIST 1 c4.8xlarge 15,000 102 1.95% 76.3 1.33%

MNIST-400K 8 r3.8xlarge 100,000 1017 1.10% 1060 0.89%

EPSILON 8 r3.8xlarge 100,000 1823 11.58% 469 10.21%

COVTYPE 8 r3.8xlarge 115,000 6640 5.73% 2960 4.13%

YEARMSD 8 r3.8xlarge 115,000 958 5.01 ˆ 10´3 312 4.58 ˆ 10´3

20

Summary and Limitations

‚ Summary:

– Theoretically, usually running time is between Opn2q and Opn3q.
– Empirically, it often behaves like Opn2q.
– Simple and as such parallelizes well even on cloud platforms.

Highly effective on datasets with as many as one million training
examples.

‚ Limitations:

– Opn2q memory usage - blows up memory usage quickly.
– Many parameters, large prediction time.

21

Thank You!

Acknowledgments:

‚ Co-authors:

– Random Features Preconditioning: Ken Clarkson, David Woodruff.
– Other paper mentioned: Po-Sen Huang, Michael Kapralov, Cameron

Musco, Christoper Musco, Huy Nguyen, Bhuvana Ramabhadran,
Tara N. Sainath, Vikas Sindhwani, Ameya Velingker, Amir Zandieh.

‚ Funding: XDATA program of the Defense Advanced Research Projects
Agency (DARPA), administered through Air Force Research Laboratory
contract FA8750-12-C-0323.

22

