
Laplacian Matrices of Graphs:
Algorithms and Applications

Daniel A. Spielman
Dept. of Computer Science

Dept. of Statistics and Data Science
Yale Institute for Network Science

SIAM AN, 2017

Applications of Laplacian linear equations
Interpolation on graphs
Physical systems
Optimization on graphs

Algorithms
Sparsification
Approximate Cholesky Factorization

Generalizations and recent developments

Outline

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2 = x

T
Lx

Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values

Take	derivatives.	Minimize	by	solving	Laplacian

1

0

0.51

0.61

0.53

0.30

ANAPC10

CDC27

ANAPC5 UBE2C

ANAPC2

CDC20

(Zhu,Ghahramani,Lafferty ’03)Interpolation on Graphs

X

(a,b)2E

(x(a)� x(b))2 = x

T
Lx

The Laplacian Quadratic Form of a Graph
X

(a,b)2E

(x(a)� x(b))2

The Laplacian Matrix of a Graph

x

T
LGx =

X

(a,b)2E

(x(a)� x(b))2

Positive real weights measuring
strength of connection
spring constant
1/resistance

The Laplacian Matrix of a Weighted Graph

x

T
LGx =

X

(a,b)2E

wa,b(x(a)� x(b))2

View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.

1V

0V

Resistor Networks

Induced voltages minimize
subject to constraints.

1V

0V

Resistor Networks
X

(a,b)2E

(x(a)� x(b))2

0V

0.5V

0.5V

0.625V0.375V

1V

0V

1V

Induced voltages minimize
subject to constraints.

Resistor Networks
X

(a,b)2E

(x(a)� x(b))2

1V

0V

0.5V

0.5V

0.625V0.375V

(0.5)2

(0.5)2
(0.

5)
2

(0
.5)
2

(0.375) 2
(0.
12
5)
2

(0.25)2

(0.125) 2

(0.375)2

1V

0V

1V

Induced voltages minimize
subject to constraints.

Resistor Networks
X

(a,b)2E

(x(a)� x(b))2

1V

0V

0.5V

0.5V

0.625V0.375V

1V

0V

1V

Effective resistance = 1/(current flow at one volt)

Induced voltages minimize
subject to constraints.

Resistor Networks

0.5

0.5 0.375

0.25

X

(a,b)2E

(x(a)� x(b))2

SS

Measuring boundaries of sets

Boundary: edges leaving a set

x(a) =

(
1 a in S

0 a not in S

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

Measuring boundaries of sets

X

(a,b)2E

(x(a)� x(b))

2

= |boundary(S)|

Boundary: edges leaving a set

S

0
0

0
0

0
0

1

1 0

1
1

1
1 1

0

0
0

1

S

Characteristic Vector of S:

Measuring boundaries of sets

x(a) =

(
1 a in S

0 a not in S

2

1 4

3 5

6

0

BBBBBB@

3 �1 �1 �1 0 0
�1 2 0 0 0 �1
�1 0 3 �1 �1 0
�1 0 �1 4 �1 �1
0 0 �1 �1 3 �1
0 �1 0 �1 �1 3

1

CCCCCCA

Symmetric

Non-positive
off-diagonals

Diagonally dominant

The Laplacian Matrix of a Graph

LG =
X

(a,b)2E

wa,bLa,b

x

T
LGx =

X

(a,b)2E

wa,b(x(a)� x(b))2

L1,2 =

✓
1 �1
�1 1

◆

=

✓
1
�1

◆�
1 �1

�

The Laplacian Matrix of a Graph

Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

Cohen, Kyng, Pachocki, Peng, Rao ’14:

O(m log

c n log ✏�1
)

eO(m log n log ✏�1
)

eO(m log

1/2 n log ✏�1
)

Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations

Quickly Solving Laplacian Equations

Good code:

LAMG (lean algebraic multigrid) – Livne-Brandt

CMG (combinatorial multigrid) – Koutis

approxChol in Laplacians.jl – S, Kyng-Sachdeva

An -accurate solution to
is an satisfying

where

LGx = b

✏

kvkLG
=

p
vTLGv = ||L1/2

G v||

Quickly Solving Laplacian Equations

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers

kex� xkLG
 ✏ kxkLG

ex

Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Maximum and Min-Cost Flow (Daitch, S ’08, Mądry ‘13)

Shortest Paths (Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression (Kyng, Rao, Sachdeva ‘15)

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva, S ‘15)

Laplacians in Linear Programming

Interior Point Method for Maximum s-t Flow

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

s t/1

/3

/4/1

/1

Interior Point Method for Maximum s-t Flow

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

s t1/1

2/3

2/41/1

1/1

3 3

Interior Point Method for Maximum s-t Flow

maximize

subject to

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

minimize

Multiple calls with varying weights wa,b

X

(a,b)2E

wa,bf(a, b)
2

subject to fout(s) = f in(t) = F

fout(a) = f in(a), 8a 62 {s, t}

Interior Point Method for Min Cost Flow

minimize

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

fout(s) = f in(t) = Fsubject to

P
(a,b) f(a, b)p(a, b)

Asymptotically fastest algorithms:

Fastest on some large problems in practice?
(Fountoulakis, Rao, S ‘??)

(Daitch, S ’08; Mądry ’13; Lee-Sidford ‘15)

Spectral Sparsification

Every graph can be approximated
by a sparse graph with a similar Laplacian

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

Preserves boundaries of every set

Solutions to linear equations are similiar

for all x

A graph H is an -approximation of G if ✏

1

1 + �
 xTLHx

xTLGx
 1 + �

Approximating Graphs

LH ⇡✏ LG () L�1
H ⇡✏ L

�1
G

Spectral Sparsification

Every graph G has an -approximation H
with edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)

Spectral Sparsification

Every graph G has an -approximation H
with edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)

Random regular graphs approximate complete graphs

Fast Spectral Sparsification

(S & Srivastava ‘08)
If sample each edge with probability
inversely proportional to its effective resistance,
only need samples

Takes time (Koutis, Levin, Peng ‘12)

O(n log n/✏2)

(Lee & Sun ‘17)
Can find an -approximation with edges
in nearly linear time.

O(n/✏2)✏

O(m log

2 n)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Gaussian Elimination:
compute upper triangular U so that

LG = UTU

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ⇡ UTU

(See also Clarkson ‘03)

Find 𝑈, upper triangular matrix, s.t 𝑈"𝑈 = 𝐴
0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA𝐴 =

Additive view of Gaussian Elimination

Additive view of Gaussian Elimination

�

���

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

�

��� =

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�
Find the rank-1 matrix that agrees on the first row and column.

�

���

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

�

���

�

���

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

�

���

Additive view of Gaussian Elimination
�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

Subtract the rank 1 matrix.
We have eliminated the first variable.�

���

16 �4 �8 �4
�4 1 2 1
�8 2 4 2
�4 1 2 1

�

���

�

���

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

�

��� � =

Additive view of Gaussian Elimination
�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

Additive view of Gaussian Elimination

Find the rank-1 matrix that agrees on the next row and column.

�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

�

���

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

�

��� =

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

Additive view of Gaussian Elimination

Subtract the rank 1 matrix.

�

���

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

�

���

�

���

0 0 0 0
0 4 �2 �2
0 �2 1 1
0 �2 1 1

�

���

�

�

���

0 0 0 0
0 0 0 0
0 0 9 �3
0 0 �3 5

�

���=

We have eliminated the second variable.

Additive view of Gaussian Elimination

Running time proportional to sum of squares
of number of non-zeros in these vectors.

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�

+

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

+

�

���

0
0
3

�1

�

���

�

���

0
0
3

�1

�

���

�

+

�

���

0
0
0
2

�

���

�

���

0
0
0
2

�

���

�

𝐴 =

Additive view of Gaussian Elimination

=

�

���

4 0 0 0
�1 2 0 0
�2 �1 3 0
�1 �1 �1 2

�

���

�

���

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

�

���

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�

+

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

+

�

���

0
0
3

�1

�

���

�

���

0
0
3

�1

�

���

�

+

�

���

0
0
0
2

�

���

�

���

0
0
0
2

�

���

�

𝐴 =

Additive view of Gaussian Elimination
0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA

=

�

���

4
�1
�2
�1

�

���

�

���

4
�1
�2
�1

�

���

�

+

�

���

0
2

�1
�1

�

���

�

���

0
2

�1
�1

�

���

�

+

�

���

0
0
3

�1

�

���

�

���

0
0
3

�1

�

���

�

+

�

���

0
0
0
2

�

���

�

���

0
0
0
2

�

���

�

𝐴 =

=

�

���

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

�

���

� �

���

4 �1 �2 �1
0 2 �1 �1
0 0 3 �1
0 0 0 2

�

��� = 𝑈" 𝑈

Gaussian Elimination of Laplacians

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

=

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

If this is a Laplacian, then so is this

0

BB@

16 �4 �8 �4
�4 5 0 �1
�8 0 14 0
�4 �1 0 7

1

CCA�

0

BB@

4
�1
�2
�1

1

CCA

0

BB@

4
�1
�2
�1

1

CCA

T

=

0

BB@

0 0 0 0
0 4 �2 �2
0 �2 10 �2
0 �2 �2 6

1

CCA

Gaussian Elimination of Laplacians

If this is a Laplacian, then so is this

2

1 4

3 6

54

8

4 1
2

4

3 6

5

22
2

When eliminate a node, add a clique on its neighbors

Approximate Gaussian Elimination

2

1 4

3 6

54

8

4 1
2

4

3 6

5

22
2

1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva ‘16)

Approximate Gaussian Elimination

When eliminate a node of degree d,
add d edges at random between its neighbors,
sampled with probability proportional to
the weight of the edge to the eliminated node

1

(Kyng & Sachdeva ‘16)

2. and making copies of every edge

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. Initialize by randomly ordering the vertices,

O(log

2 n)

Total time is O(m log

3 n)

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Analysis by Random Matrix Theory:

Write UTU as a sum of random matrices.

Random permutation and copying
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11)

E
⇥
UTU

⇤
= LG

2. and making copies of every edge

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. Initialize by randomly ordering the vertices,

O(log

2 n)

Total time is O(m log

3 n)

Can improve asymptotics by sacrificing some simplicity

2. and making copies of every edge

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1. Initialize by randomly ordering the vertices,

O(log

2 n)

Total time is O(m log

3 n)

Can improve asymptotics by sacrificing some simplicity

Can improve practice by sacrificing some theory

Approximate Gaussian Elimination

A fast implementation in Laplacians.jl

Usually 400k-1M edges per second, for 8 digits

Competes with LAMG, CMG, incomplete Cholesky.

Never much slower.

Sometimes much faster.

Other families of linear systems

complex-weighted Laplacians

connection Laplacians

✓
1 ei✓

e�i✓ 1

◆

✓
I Q
QT I

◆

Recent Developments

(Kyng, Lee, Peng, Sachdeva, S ‘16)

Laplacians of Directed Graphs!
(Cohen, Kelner, Peebles, Peng, Sidford, Vladu ‘16)
(Cohen, Kelner, Peebles, Peng, Rao, Sidford, Vladu ‘16)
+1 to come with Rasmus Kyng (see his thesis)

With analyses of iterative methods for
non-symmetric systems.

Fast computation of stable distribution of
random walks.

Recent Developments

Recent Developments

Laplacians.jl

Laplacian equation solvers
Sparsification
Low-stretch spanning trees
Interior point methods
Local graph clustering
Tricky graph generators

To learn more

My web page on:
Laplacian linear equations, sparsification, local graph
clustering, low-stretch spanning trees, and so on.

My class notes from
“Graphs and Networks” and “Spectral Graph Theory”

Lx = b, by Nisheeth Vishnoi

Theses of
Richard Peng, Aaron Sidford, Yin Tat Lee, and Rasmus Kyng

