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Interpolate values of a function at all vertices
from given values at a few vertices.
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Interpolate values of a function at all vertices
from given values at a few vertices.

Minimize

Subject to given values 

Take	derivatives.	Minimize	by	solving	Laplacian
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The Laplacian Quadratic Form of  a Graph
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The Laplacian Matrix of  a Graph
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Positive real weights measuring 
strength of connection
spring constant
1/resistance

The Laplacian Matrix of  a Weighted Graph
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View edges as resistors connecting vertices

Apply voltages at some vertices.
Measure induced voltages and current flow.
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Induced voltages minimize                                
subject to constraints.
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Effective resistance = 1/(current flow at one volt)

Induced voltages minimize                                
subject to constraints.
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Measuring boundaries of sets

Boundary: edges leaving a set



x(a) =

(
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Boundary: edges leaving a set
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Quickly Solving Laplacian Equations

Where m is number of non-zeros and n is dimension

O(m log

c n log ✏�1
)

S,Teng ’04: Using low-stretch trees and sparsifiers



Where m is number of non-zeros and n is dimension
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Koutis, Miller, Peng ’11: Low-stretch trees and sampling
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Quickly Solving Laplacian Equations



Where m is number of non-zeros and n is dimension

Cohen, Kyng, Pachocki, Peng, Rao ’14:
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Koutis, Miller, Peng ’11: Low-stretch trees and sampling

S,Teng ’04: Using low-stretch trees and sparsifiers

Quickly Solving Laplacian Equations



Quickly Solving Laplacian Equations

Good code:

LAMG (lean algebraic multigrid) – Livne-Brandt

CMG (combinatorial multigrid) – Koutis

approxChol in Laplacians.jl – S, Kyng-Sachdeva



An   -accurate solution to                 
is an satisfying

where 

LGx = b

✏

kvkLG
=

p
vTLGv = ||L1/2

G v||

Quickly Solving Laplacian Equations
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Laplacians appear when solving Linear Programs on
on graphs by Interior Point Methods

Maximum and Min-Cost Flow       (Daitch, S ’08, Mądry ‘13)

Shortest Paths             (Cohen, Mądry, Sankowski, Vladu ‘16)

Isotonic Regression                    (Kyng, Rao, Sachdeva ‘15) 

Lipschitz Learning : regularized interpolation on graphs
(Kyng, Rao, Sachdeva, S ‘15)

Laplacians in Linear Programming



Interior Point Method for Maximum s-t Flow

maximize

subject to  

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E
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Interior Point Method for Maximum s-t Flow

maximize

subject to  

fout(s)

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

minimize

Multiple calls with varying weights  wa,b

X

(a,b)2E

wa,bf(a, b)
2

subject to  fout(s) = f in(t) = F

fout(a) = f in(a), 8a 62 {s, t}



Interior Point Method for Min Cost Flow

minimize

fout(a) = f in(a), 8a 62 {s, t}
0  f(a, b)  c(a, b), 8(a, b) 2 E

fout(s) = f in(t) = Fsubject to  

P
(a,b) f(a, b)p(a, b)

Asymptotically fastest algorithms:

Fastest on some large problems in practice?
(Fountoulakis, Rao, S ‘??)

(Daitch, S ’08; Mądry ’13; Lee-Sidford ‘15)



Spectral Sparsification

Every graph can be approximated 
by a sparse graph with a similar Laplacian



for all x

A graph H is an -approximation of G if ✏
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Approximating Graphs

LH ⇡✏ LG



for all x

A graph H is an -approximation of G if ✏
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Approximating Graphs

Preserves boundaries of every set 



Solutions to linear equations are similiar

for all x

A graph H is an -approximation of G if ✏
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Spectral Sparsification

Every graph G has an -approximation H
with                      edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)



Spectral Sparsification

Every graph G has an -approximation H
with                      edges n(2 + ✏)2/✏2

✏

(Batson, S, Srivastava ’09)

Random regular graphs approximate complete graphs 



Fast Spectral Sparsification

(S & Srivastava ‘08)  
If sample each edge with probability 
inversely proportional to its effective resistance,
only need                          samples

Takes time                         (Koutis, Levin, Peng ‘12)

O(n log n/✏2)

(Lee & Sun ‘17)  
Can find an   -approximation with               edges 
in nearly linear time. 

O(n/✏2)✏

O(m log

2 n)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Gaussian Elimination:
compute upper triangular U so that

LG = UTU

Approximate Gaussian Elimination:
compute sparse upper triangular U so that

LG ⇡ UTU

(See also Clarkson ‘03)



Find 𝑈, upper triangular matrix, s.t 𝑈"𝑈 = 𝐴
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination

Subtract the rank 1 matrix.
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Additive view of  Gaussian Elimination

Running time proportional to sum of squares
of number of non-zeros in these vectors. 
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Additive view of  Gaussian Elimination
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Additive view of  Gaussian Elimination
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Gaussian Elimination of  Laplacians
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Gaussian Elimination of  Laplacians

If this is a Laplacian,                             then so is this
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When eliminate a node, add a clique on its neighbors



Approximate Gaussian Elimination
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1. when eliminate a node, add a clique on its neighbors

2. Sparsify that clique, without ever constructing it

(Kyng & Sachdeva ‘16)



Approximate Gaussian Elimination

When eliminate a node of degree d,
add d edges at random between its neighbors, 
sampled with probability proportional to 
the weight of the edge to the eliminated node

1

(Kyng & Sachdeva ‘16)



2.  and making                 copies of every edge

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1.  Initialize by randomly ordering the vertices, 

O(log

2 n)

Total time is O(m log

3 n)



(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

Analysis by Random Matrix Theory:

Write UTU as a sum of random matrices.

Random permutation and copying 
control the variances of the random matrices

Apply Matrix Freedman inequality (Tropp ‘11) 

E
⇥
UTU

⇤
= LG



2.  and making                 copies of every edge

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1.  Initialize by randomly ordering the vertices, 

O(log

2 n)

Total time is O(m log

3 n)

Can improve asymptotics by sacrificing some simplicity



2.  and making                 copies of every edge

(Kyng & Sachdeva ‘16)
Approximate Gaussian Elimination

1.  Initialize by randomly ordering the vertices, 

O(log

2 n)

Total time is O(m log

3 n)

Can improve asymptotics by sacrificing some simplicity

Can improve practice by sacrificing some theory 



Approximate Gaussian Elimination

A fast implementation in Laplacians.jl

Usually 400k-1M edges per second, for 8 digits

Competes with LAMG, CMG, incomplete Cholesky.

Never much slower.

Sometimes much faster.



Other families of linear systems

complex-weighted Laplacians

connection Laplacians
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Recent Developments

(Kyng, Lee, Peng, Sachdeva, S ‘16)



Laplacians of Directed Graphs!
(Cohen, Kelner, Peebles, Peng, Sidford, Vladu ‘16) 
(Cohen, Kelner, Peebles, Peng, Rao, Sidford, Vladu ‘16) 
+1 to come with Rasmus Kyng (see his thesis)

With analyses of iterative methods for
non-symmetric systems.

Fast computation of stable distribution of 
random walks.

Recent Developments



Recent Developments

Laplacians.jl

Laplacian equation solvers
Sparsification
Low-stretch spanning trees
Interior point methods
Local graph clustering
Tricky graph generators



To learn more

My web page on:
Laplacian linear equations, sparsification, local graph 
clustering, low-stretch spanning trees, and so on.

My class notes from 
“Graphs and Networks” and “Spectral Graph Theory”

Lx = b, by Nisheeth Vishnoi

Theses of
Richard Peng, Aaron Sidford, Yin Tat Lee, and Rasmus Kyng


