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Applications: concern about one tail

120kn marine vessel
(Patent: S. Brizzolara)
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Consequences in decision making

Design 1: uncertain response Z1

Design 2: uncertain response Z2

pdf of pdf of 

1 1

1

1.67 0.33

Which design is less uncertain, safer?

Concern about upper tail (displacement, stress, cost)
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Using mean and standard deviation?

pdf of pdf of 

1 1

1

1.67 0.33

same mean (−0.33)

same std. dev. (0.87)

Harry M. Markowitz
(www.nobelprize.org)

Designs are equally “good” from this perspective
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But it gets worse..

Design 1: uncertain response W1

Design 2: uncertain response W2

Two possible outcomes:

With probability 0.5: W1 = 0 and W2 = 0

With probability 0.5: W1 = −2 and W2 = −1
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Design 1: uncertain response W1

Design 2: uncertain response W2

Two possible outcomes:

With probability 0.5: W1 = 0 and W2 = 0

With probability 0.5: W1 = −2 and W2 = −1

Obviously, Design 1 better

But, if ranking based on mean + 2 std. dev., Design 2 wins!

Mean plus std. deviation not suitable for decision making
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Today’s talk

Describe alternative way of quantifying uncertainty that

focuses on safety, computability; avoids paradoxes

relies on convex analysis

10

[ ]

( )

( )

[ ]

R.T. Rockafellar
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Today’s talk (cont.)

Show how to carry out

design optimization under uncertainty

surrogate building using multi-fidelity analysis

with this alternative way of quantifying uncertainty
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Impact in multi-disciplinary 3D hydrofoil design
17 design variables; 5 uncertain parameters

Quantities of interest: hydrodynamical and structural

Multi-fidelity 3D URANSE for turbulent cavitating flow, 3D FEM
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R.A.Candidate

displ. drag/lift lift stress margin
[m] [t] [MPa]

Prediction 0.109 0.139 36.8 −142
Actual 0.060 0.130 37.7 −410

Benchmark 0.097 0.132 35.3 −294

Bonfiglio, Royset, Karniadakis, ’18
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Alternative way: superquantile risk
For α ∈ [0, 1], the α-superquantile of random variable Z :

Rα(Z ) = average of (1− α)100% worst outcomes of Z
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Alternative way: superquantile risk
For α ∈ [0, 1], the α-superquantile of random variable Z :

Rα(Z ) = average of (1− α)100% worst outcomes of Z

pdf of 

1 1( )
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1

α = 0: Rα(Z ) = E[Z ] = expected value (mean) of Z

α = 1: Rα(Z ) = worst outcome of Z that can occur

Z1 safely below Z2 when Rα(Z1) ≤ Rα(Z2)
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Alternative way: superquantile risk
For α ∈ [0, 1], the α-superquantile of random variable Z :

Rα(Z ) = average of (1− α)100% worst outcomes of Z

pdf of 

1 1( )

1

1

α = 0: Rα(Z ) = E[Z ] = expected value (mean) of Z

α = 1: Rα(Z ) = worst outcome of Z that can occur

Z1 safely below Z2 when Rα(Z1) ≤ Rα(Z2)

Rockafeller & Uryasev ’00, ’02 (CVaR); Acerbi & Tasche ’02 (exp. shortfall)

Also called AVaR (Föllmer & Schied ’04) in finance and OR
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Return to triangular example

Design 1: uncertain response Z1

Design 2: uncertain response Z2

pdf of pdf of 

1 1

1

1.67

( )

( )

Averages of worst 10% outcomes:

R0.9(Z1) = 0.58 and R0.9(Z2) = 0.28 (better)

Response of Design 2 safely below that of Design 1
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Advantages of superquantile risk (s-risk)

Modeling considerations:

adapts to any level of “safety” (can vary α)

focuses on the “bad” tail (promotes resilience)

promotes diversification

connects with dual utility theory

probes deeper than expected utility theory

relates to risk-neutral decisions under stochastic ambiguity

Computational considerations:

preserves convexity (continuity)

easier to find globally optimal designs and decisions

when using s-risk,
optimization under uncertainty “no harder” than deterministic
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Design optimization under uncertainty

Design variables: deterministic vector x

Uncertain parameters: random vector V

System response (quantity of interest): g(x ,V )

Cost of design: ϕ(x)
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Design optimization under uncertainty

Design variables: deterministic vector x

Uncertain parameters: random vector V

System response (quantity of interest): g(x ,V )

Cost of design: ϕ(x)

Find design x that

min ϕ(x)

subject to Rα

(

g(x ,V )
)

≤ t

and other (deterministic) constraints

Resulting design x⋆: on average in the (1− α)100% worst
outcomes of g(x⋆,V ), response will not exceed t

(Easily extended to multiple quantities of interests, uncertain cost)
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Role of convexity

If g(x , v) is convex in x for all outcomes v of V :

( , )convex
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Role of convexity

If g(x , v) is convex in x for all outcomes v of V :

( ( , ))

( , )convex

convex
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What about failure probability?

Find design x that

min ϕ(x)

subject to Prob
(

g(x ,V ) > 0
)

≤ 1− α

and other (deterministic) constraints

Common formulation in reliability-based design optimization
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Lack of convexity for failure probability

If g(x , v) is convex in x for all outcomes v of V :

Prob( , > 0)

( , )convexnonconvex

discontinuous

Using failure probability makes optimization harder
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Again return to triangular example

Design 1: uncertain response Z1

Design 2: uncertain response Z2

pdf of pdf of 

1 1

1

1.67

( )

( )

Recall: R0.9(Z1) = 0.58 and R0.9(Z2) = 0.28 (better)

Prob(Z1 > 0) = 0.25 (better) and Prob(Z2 > 0) = 0.31

Failure probability doesn’t account for magnitude of exceedance
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..but sometimes failure probability is needed..

Failure probability common in regulatory requirements

Superquantiles lead to a (best) conservative approximation of
failure probability through buffered failure probability
(Rockafellar & Royset ’10, Norton et al. ’17, Mafusalov et al. ’18):

Rα

(

g(x ,V )
)

≤ 0

⇐⇒ buffered failure probability of g(x ,V ) ≤ 1− α

=⇒ Prob
(

g(x ,V ) > 0
)

≤ 1− α

Constraints on s-risk can be reinterpreted in probabilistic terms
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Role of convexity

But, g(x , v) may not be convex in x :

( , )nonconvex
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Role of convexity

But, g(x , v) may not be convex in x :

( ( , ))

( , )

“moderately 

nonconvex”

nonconvex
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Role of convexity

But, g(x , v) may not be convex in x :

( , )nonconvex

Prob( , > 0)

“highly 

nonconvex

discontinuous”

22 / 47



Further simplifications
Defining formula for superquantiles (Rockafeller & Uryasev ’00, ’02):

Rα

(

g(x ,V )
)

= min
y0∈R

{

y0 +
1

1− α
E
[

max{0, g(x ,V ) − y0}
]

}
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(

g(x ,V )
)

= min
y0∈R

{

y0 +
1

1− α
E
[

max{0, g(x ,V ) − y0}
]

}

If V has outcomes v1, v2, ..., vm with probabilities p1, p2, ..., pm,

min ϕ(x)

subject to Rα

(

g(x ,V )
)

≤ t

can equivalently be replaced by finding x , y0 ∈ R, y ∈ R
m that

min ϕ(x)

subject to y0 +
1

1− α

m
∑

i=1

piyi ≤ t

g(x , v i )− y0 ≤ yi for all i = 1, ...,m

0 ≤ yi for all i = 1, ...,m
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Further simplifications
Defining formula for superquantiles (Rockafeller & Uryasev ’00, ’02):

Rα

(

g(x ,V )
)

= min
y0∈R

{

y0 +
1

1− α
E
[

max{0, g(x ,V ) − y0}
]

}

If V has outcomes v1, v2, ..., vm with probabilities p1, p2, ..., pm,

min ϕ(x)

subject to Rα

(

g(x ,V )
)

≤ t

can equivalently be replaced by finding x , y0 ∈ R, y ∈ R
m that

min ϕ(x)

subject to y0 +
1

1− α

m
∑

i=1

piyi ≤ t

g(x , v i )− y0 ≤ yi for all i = 1, ...,m

0 ≤ yi for all i = 1, ...,m

Optimization under uncertainty “no harder” than deterministic
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Risk-adaptive learning and surrogate building
Response g(x ,V ) costly to compute (high-fidelity simulation)

Leverage approximating responses h(x ,V ) (low-fidelity simulations)
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)

i.e., Rα

(

g(x ,V )
)

≤ Rα

(

f (h(x ,V ))
)

Flexibility: h(x , v) vector-valued, possibly hj(x , v) = xj , etc.

Example: ĥ(x , v) = lower-level surrogate and f
(

h(x , v)
)

=

a0+a⊤x+ c⊤v +b0ĥ(x , v)+ ā⊤xĥ(x , v)+ c̄⊤v ĥ(x , v)+b[ĥ(x , v)]2

Finding f amounts to finding coefficients a0, a, ā, b0, b, c , c̄
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Risk-adaptive learning and surrogate building
Response g(x ,V ) costly to compute (high-fidelity simulation)

Leverage approximating responses h(x ,V ) (low-fidelity simulations)

Risk-adaptive surrogate building:

find function f such that g(x ,V ) safely below f
(

h(x ,V )
)

i.e., Rα

(

g(x ,V )
)

≤ Rα

(

f (h(x ,V ))
)

Flexibility: h(x , v) vector-valued, possibly hj(x , v) = xj , etc.

Example: ĥ(x , v) = lower-level surrogate and f
(

h(x , v)
)

=

a0+a⊤x+ c⊤v +b0ĥ(x , v)+ ā⊤xĥ(x , v)+ c̄⊤v ĥ(x , v)+b[ĥ(x , v)]2

Finding f amounts to finding coefficients a0, a, ā, b0, b, c , c̄

Notation: Y = g(x ,V ), X = h(x ,V ); view x as “random” over
design space (set-based design)
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Rα(Y ) ≤ Rα

(

f (X )
)
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Rα(Y ) ≤ Rα

(

f (X )
)

How can this be achieved without being overly conservative?
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Rα(Y ) ≤ Rα

(

f (X )
)

How can this be achieved without being overly conservative?

Reasonable: minimize the error of Y − f (X )

But using what measure of error? Least-squares will not do
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Risk-adaptive learning and surrogates (cont.)

Response quantity: random variable Y (high-fidelity simulation)

Approximations: random vector X (low-fidelity simulations)

Find f such that Rα(Y ) ≤ Rα

(

f (X )
)

How can this be achieved without being overly conservative?

Reasonable: minimize the error of Y − f (X )

But using what measure of error? Least-squares will not do

Superquantile regression possible (but not discussed here)
(Rockafellar, Royset, Miranda ’14)
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Risk-adaptive learning algorithm

For simplicity, f (X ) = c0 + c⊤X , with c ∈ R
k

Two-step algorithm:

1. Solve min
c∈Rk

{

c⊤E[X ] + Rα(Y − c⊤X )
}

+ λ‖c‖1

2. Set c0 = Rα(Y − c⊤X )

Step 1 (Residual risk minimization)
convex problem; scalable
problem size is data independent
resembling problem in SVM

Step 2 (s-risk computation)
either 1D convex problem or sorting (quick)

Rockafellar & Royset ’15a; Royset, Bonfiglio, Vernengo, Brizzolara ’17
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Theoretical results

Conservative surrogate on training data:
For α ∈ (0, 1) and (c0, c) computed by risk-adaptive learning,

Rα(Ỹ ) ≤ Rα(c0 + c⊤X̃ )

with (X̃ , Ỹ ) distributed according to training data

Rockafellar & Royset ’15a
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Theoretical results

Conservative surrogate on training data:
For α ∈ (0, 1) and (c0, c) computed by risk-adaptive learning,

Rα(Ỹ ) ≤ Rα(c0 + c⊤X̃ )

with (X̃ , Ỹ ) distributed according to training data

Consistency:
For α ∈ (0, 1) and (c0, c) computed by risk-adaptive learning,

Rα(Y ) ≤ Rα(c0 + c⊤X ) in the limit as training size → ∞

with (X ,Y ) having the actual (true) distribution

Rockafellar & Royset ’15a
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Broader landscape: risk-regression connections

Residual risk problem equivalent to quantile regression

Extensions to (regular) measures of risk beyond s-risk

Risk (design) connected with error (regression, prediction)

error

deviation

regret

risk

Rockafellar & Uryasev ’13; Rockafellar & Royset ’15a
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Detail: multi-disciplinary 3D hydrofoil design

Surface-piercing super-cavitating hydrofoil

17 design variables; 5 uncertain parameters

Quantities of interest: hydrodynamical and structural

308 high-fidelity 3D URANSE solves
3063 high-fidelity 3D FEM solves
19830 low-fidelity 3D URANSE solves and 3D FEM solves

Bonfiglio, Royset, and Karniadakis ’18
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Risk-adaptive learning of lift force

low fidelity output
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Accurate predictions possible
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Risk-adaptive learning of lift force (cont.)
Surrogate has 1+38 coefficients to be learned
Sparsity (model selection) across 20 surrogates:

nz = 455
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Red, gray, orange, blue, pink, and yellow colors correspond to a, c ,
b0, ā, c̄ , and b, respectively

a0+a⊤x+ c⊤v +b0ĥ(x , v)+ ā⊤xĥ(x , v)+ c̄⊤v ĥ(x , v)+b[ĥ(x , v)]2
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Risk-adaptive learning of displacement

low fidelity output
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Risk-adaptive learning of displacement (cont.)
Surrogate has 1+44 coefficients to be learned
Sparsity (model selection) across 20 surrogates:

nz = 240
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Red, gray, orange, blue, pink, and yellow colors correspond to a, c ,
b0, ā, c̄ , and b, respectively

a0+a⊤x+ c⊤v +b0ĥ(x , v)+ ā⊤xĥ(x , v)+ c̄⊤v ĥ(x , v)+b[ĥ(x , v)]2
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Uncertainty in surrogates: lift
Not standard deviation, but superquantile deviation!
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Uncertainty in surrogates: displacement

design
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Poor low-fidelity: uncertain surrogates, but still conservative
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Design of torpedo hull: seakeeping

Motion of vessel in regular and irregular waves

Torpedo hull fully submerged at medium speed (60kn)

Ongoing w/ L. Bonfiglio, MIT, and G. Karniadakis, Brown Univ.
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Design of torpedo hull: seakeeping (cont.)
Acceleration (pitch) of vessel

1000 high- and low-fidelity simulations (2D strip theory)
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Design of torpedo hull: seakeeping (cont.)
Acceleration (pitch) of vessel

1000 high- and low-fidelity simulations (2D strip theory)

low fidelity output
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Design of torpedo hull: seakeeping (cont.)

60 design variables; 3 uncertain parameters

Surrogate has 1+128 coefficients to be learned

Sparsity (model selection) across 20 surrogates:

nz = 1392
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Similar surrogate form as before: f
(

h(x ,V )
)

=

a0+a⊤x+ c⊤v +b0ĥ(x , v)+ ā⊤xĥ(x , v)+ c̄⊤v ĥ(x , v)+b[ĥ(x , v)]2
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Accuracy of surrogates and design improvement

90 deg

180 deg
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Actual (red) response between conser-
vative and nominal (green) predictions
regardless of wave direction

Optimized (green) com-
pared with benchmark
(red) torpedo hull
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Application in earthquake engineering

5 m 

5 m 

Frame A 

Frame B

5 m 

6 m 4 m        6 m 

12-story reinforced concrete symmetrical frame

High-fidelity: nonlinear time-history analysis

Low-fidelity: linear-time history, pushover, response spectrum

Input uncertainty: ground motion (79 ground motions)

Response quantity: inter-story drift ratio

Ongoing w/ S. Gunay and K. Mosalam, Berkeley
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Accuracy of surrogates

Pushover surrogate: c0 + cX (PO only)

Full surrogate: c0 + c1X1 + c2X2 + c3X3 (LTH, PO, RS)

Training replicated 10 times

Story 5 drift (%) Story 12 drift (%)

Surrogate: Full Pushover Full Pushover

nominal 8.901 8.846 1.896 1.964
conservative 9.189 9.204 2.156 2.321

Actual R0.8(Y ) 8.344 1.614
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High-dim nonlinear stochastic dynamical system
Venturi-16 system: ẋi (t) = −xi sin xi−1 − axi + b, i = 1, ..., 1000
Random initial condition x(0) = W independent Gaussian

t = 0.0 t = 1.0 t = 4.0
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Find surrogate of state 1 at time 20: x1(20)
Ongoing w/ D. Venturi, UC Santa Cruz
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Risk-adaptive learning in 1000 dimensions
Training of c0 + c⊤W using 500 samples; 30 reps; α = 0.8

number of nonzero regression slope coefficients
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Tail-focused Gaussian approximation of pdf
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Summary

Prediction and design based on superquantiles

Promotes safety, resilience, and tractability

Scalable surrogate building from multi-fidelity simulations

Surrogates adapts to decision maker’s preferences

Applications in naval architecture, earthquake engineering,
semi-conductor manufacturing (ongoing w/ D. Kouri, Sandia)
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More risk...

MT8 Optimization and Control Under Uncertainty
Drew Kouri
2:30 PM-4:30 PM
Grand Ballroom G - 1st Floor
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