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Motivation

We want to reconstruct the 3-D propagation and breakup
of electrical waves in cardiac tissue experiments.

This 3-D time series may help us understand what is going
on in the unobserved thickness of the muscle.

Solving this problem requires both state estimation
(voltages, concentrations, etc.) and the ability to forecast
from a given state.

“Data assimilation” is used for this purpose in the weather-
forecasting community: observational data are combined
with numerical model predictions to improve a forecast—
or, here, a reconstruction.



Forecasting as an
initial-value problem

e Mathematically, prediction requires both a model of

the system,

ax_F(t )
at_ ;X;

and an estimate of the current system state, x(tj).

e But there will be errors in both!

 Model: errors in formulation (approximation) and
numerical solution.

* Initial state estimate: direct measurement generally
is not possible.



State estimation

Models and observations can both be used for state
estimation (time series: series of state estimates).

Models: “predict” the state by running the model.
— Excellent spatial and temporal resolution.

— Approximations of the true dynamics (quantitatively).

Observations: interpolate from observed data.
— Reflect the true system.
— Spatially and temporally sparse.
— Interpolating would ignore dynamics (we can use information from
previous times to provide additional constraints).
Data-assimilation approach: combine new observations with
a model-derived state estimate, based on older observations.



Data assimilation cycle

Data assimilation is an iterative process.




Data assimilation cycle

Data assimilation is an iterative process.

After some time has passed, use the
model state as a new prior forecast
and incorporate new observations.



Kalman Filter

Most data-assimilation methods are based on the Kalman
filter, which produces state estimates from noisy data.

The Kalman filter (Kalman 1960, 1961) was designed for a

linear model and observation operator.

[t assumes Gaussian observation errors: y¢ = H (x(tj)) + ;.

In the linear case (reasonable for many nonlinear models),
the cost function becomes

J? () =[y,-Hx]'R [y, -H x]+[x-x;]"(P,)'[x-x,]+c.
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Ensemble Kalman Filter

e Start with a kmember ensemble at time n — 1.

XD i=12,... k}

n—1
e Each ensemble member is propagated to the next time

using the model (function M).

{Xbu) > M(x“(i) )}
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Ensemble Kalman Filter

Start with a k-member ensemble at time n — 1.
D i=12,... k|

Each ensemble member is propagated to the next time

using the model (function M).

{Xb(z') ~ M(x"(i) )}

7i 11—1

At that time, the “best guess” of the state from the model
(background state estimate) is given by the ensemble

sample mean. X_ 1 e
1
k'S

The background covariance is given by the ensemble
sample covariance (how much variation in ensemble?).

—(k l)_li( b(i) _n (i) _ y — (k- l)—IXb(Xb)

i=1



Cardiac application

e We aim to reconstruct the 3-D times series of electrical
wave propagation and breakup in cardiac tissue.

* Experimentally, observations of one variable (voltage)
are available at the tissue surfaces (from cameras
recording fluorescence signals).

e We first consider known simulated states to evaluate
the potential of data assimilation in advance of testing
using experimental data.

* A numerical prediction model is used.



Numerical model

 We use the 3-variable (u, v, w) Fenton-Karma model
to update the voltage u(t, §) by the sum of all

transmembrane currents I, and diffusive coupling:

D _ . DE) Ve, §) — lion ().

* D(&) contains information about the arrangement of
cells (rotational anisotropy in 3D). Canctnc:Action Posente

* The system is solved numerically. o - \

Fenton FH, Karma A. 1998. Chaos 8, 20-47.



[nitial experiments

Truth is given by the numerical simulation (a knowable
state to allow for performance evaluation and testing).

Synthetic observations are created by adding random
Gaussian error to a subsampling (in space and time) of
the truth.

Using the same model both to generate truth and to
evolve state estimates forward in time eliminates model
error and puts the full focus on algorithm performance.

We show initial results for both 1-D and 3-D.



1-D wave propagation

In 1-D, the Fenton-Karma model

is set up on a ring (14 cm, 0.025cm
spacing) and the system is placed
in a state with wavelength
oscillations (discordant alternans).
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1-D wave propagation

In 1-D, the Fenton-Karma model

is set up on a ring (14 cm, 0.025cm
spacing) and the system is placed
in a state with wavelength
oscillations (discordant alternans).

The model is run to generate
the “truth.”

Observations: random Gaussian error (¢ = 0.05) added to
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the voltages of this “truth” every 5 ms, grid spacing 0.075cm).

Resolution is comparable to (or worse than) typical cameras.




1-D test run

Assimilation: every 5 ms.

20-member ensemble (blue), initialized to states from 40ms prior to
first assimilation plus random Gaussian error (¢ = 0.05).

Note that the ensemble mean (black) has a different front structure
from any of the ensemble members (blue).

u and v are corrected by u observations,
but not w (variable localization).

Multiplicative inflation is used (increase
covariance artificially) with p = 1.2.

[_ocalization is used with =0.05 cm
(observations are used within a radius

of 2\/ 10/3 o) )
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1-D test run

After the first assimilation, the analysis (observations
incorporated) is a much better fit to the truth and observations
than the background (left figure).

The analysis quickly converges to the truth and the RMS error
remains low throughout the 2-second simulation (right figure).
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Response to different initial conditions

When the initial ensemble is a poor estimate = "\:\5»\\\\\ 5
e .\_\'\. B '7-("

of the truth, the assimilation initially can fail.

Example: 20-member ensemble, initialized to
states from 1000ms prior to first assimilation.
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Response to different initial conditions
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* When the initial ensemble is a poor estimate = = >3
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of the truth, the assimilation initially can fail.

* Example: 20-member ensemble, initialized to
states from 1000ms prior to first assimilation.

Voltage

 The wave now dies in the forecast and is
unable to recover, even with observations of
the truth.
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Ensemble collapse

* The system is unable to correct itself because the ensemble
members become very similar, leading to overconfidence in the
background and an inability to respond to observations.

e Multiplicative inflation
tries to manage this, but
cannot add new dimensions
to the background.

Background Spread at 500 ms
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Ensemble collapse

* The system is unable to correct itself because the ensemble
members become very similar, leading to overconfidence in the
background and an inability to respond to observations.

* Multiplicative inflation * Instead, new vectors can be added to
tries to manage this, but the ensemble to not only increase
cannot add new dimensions  spread, but also change the space
to the background. spanned by the ensemble.
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Additive inflation

The additive inflation allows the algorithm to
recover after the initial wave dies.

Truth

Now after about 500 ms, the system syncs with
the truth and remains close to it.
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Unobserved variables

Truth v Truth w

Although only u
observations are used,
both unobserved fields
converge to the truth

within 500 ms.

This is encouraging for
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3-D setup

We use a stack of spiral waves to start a scroll wave.

20 ensemble members are used based
on the 1-D results.

Localization is used (=3 grid point,

so an 18-grid-point radius of influence).

Assimilation is performed every 5ms (as in 1D) and
using every 3 grid points (0.06 cm observation grid
spacing).

The initial ensemble is generated using the previous
20 model states 5ms apart from the spinup.

Multiplicative inflation factor is 1.1.



3-D LETKEF results

e As expected, the initial guess is poor due to the initialization.

* The initial analysis significantly improves the voltage estimate
and recovers most of the scroll wave.
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3-D LETKEF results

After several assimilation cycles the system converges to the truth.

The convergence in again seen in all variables even though only u

is observed.

Here u, v, and w are corrected.
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3-D LETKEF results

* The largest errors in the analysis come from two areas:
1. Lower voltage in the center of the wave (yellow).

2. Smoothing of the sharp wave front (blue).

e The analysis does correct both, but not enough—yet!
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Summary

Data assimilation shows promise as a means of
reconstructing 3D time series in cardiac applications.

Findings thus far:
— Fairly low-dimensional space (20 ensemble members).

— Additive, but not multiplicative, inflation confers ability to
recover from very poor initial guess.

— Corrections based on observations in one variable
successfully correct other variables.

— Some sensitivity to initialization.



Ongoing and future work

Analyze how the initial states chosen affect robustness.
Study the effects of model error.
Consider more complicated dynamical states.

Use more realistic 3-D observation distributions to see
how far into the interior information can be
propagated reliably.

Use the algorithm to estimate model parameters—we
have begun testing this capability.

[nvestigate ways to initialize and simulate real tissue.



