

Savannah Finger and James "Bo" Slone, P.G. Edwards Aquifer Protection Program Office of Compliance and Enforcement Texas Commission on Environmental Quality

9

+AS COMMISSION

No.

ENHIPC

Edwards Program Review

Chapter 30 of the Texas Administrative Code §213.1.

The purpose of this chapter is to regulate activities having the potential for polluting the Edwards Aquifer and hydrologically connected surface streams in order to protect existing and potential uses of groundwater and maintain Texas Surface Water Quality Standards. The activities addressed are those that pose a threat to water quality.

Edwards Program Review

Zones Requiring Water Quality Treatment:

- Recharge Zone
- Contributing Zone
- Contributing Zone within the Transition Zone

Note: water quality treatment not required in the Transition Zone unless surface water drains to Recharge Zone

Rule for 80% removal

30TAC§213.5(b)(4)(D)(ii)(I):

BMPs and measures must be implemented to control the discharge of pollution from regulated activities after the completion of construction. These practices and measures must be designed, constructed, operated, and maintained to insure that 80% of the incremental increase in the annual mass loading of total suspended solids from the site caused by the regulated activity is removed. These quantities must be calculated in accordance with technical guidance prepared or accepted by the executive director.

TCEQ RG-348: "Complying with the Edwards Aquifer Rules Technical Guidance on Best Management Practices"

All the load calculations are based on Equation 3.1 **Equation 3.1:** $L = A \times P \times Rv \times C \times 0.226$

where:

L = annual pollutant load (pounds) A = Contributing drainage area (acres) P = Average annual precipitation (inches) Rv = Appropriate runoff coefficient C = Average TSS concentration (mg/L) 0.226 = units conversion factor

TCEQ RG-348: "Complying with the Edwards Aquifer Rules Technical Guidance on Best Management Practices"

Equation 3.2: $L_M = (0.8 \times 0.226)(A_N \times P \times 0.9 \times 170 - A_N \times P \times 0.03 \times 80)$ where:

> L_M = Required TSS removal (pounds) A_N = Net increase in impervious area (acres) P = Average annual precipitation (inches)

This equation simplifies to:

Equation 3.3: $L_M = 27.2 (A_N x P)$

TCEQ TSS Load Removal Spreadsheet Link:

https://www.tceq.texas.gov/permitting/eapp/spreadsheet.html

7

TCEQ TSS Load Removal Spreadsheet

20	• •	$ \times \sqrt{f_r}$														
4]	A	В	С	D	E	F	G	Н	L .	J	K	L	M	N	0	
		blue indicate location of instructions in the Technica	I Guidance	Manual - R	G-348.											
		shown in red are data entry fields.														4
-	Characters	shown in black (Bold) are calculated fields. Cha	nges to the	ese fields	will remove the	equations u	sed in t	he sprea	dsheet.							
0																
1 :	1. The Require	ed Load Reduction for the total project:	Calculations f	rom RG-348		Pages 3-27 t	o 3-30									
2						_			_		_				_	+
3		Page 3-29 Equation 3.3: L _M =	27.2(A _N x P)													
4			D : 1700		15 A 11		0.00	-							_	+
-	where:				ulting from the propo	sed developmen	t = 80% o	f increased	beol t						_	
6					area for the project											-
78		P=	Average annu	al precipitatio	in, inches	_									_	+
9	Site Data:	Determine Required Load Removal Based on the Entire Project	1			-										
0	one build.		Williamson	•												1
1		Total project area included in plan * =	17.00	acres												
22	P	redevelopment impervious area within the limits of the plan * =	0.00	acres												
23	Total po	st-development impervious area within the limits of the plan' =		acres		_			_							+
24 25		Total post-development impervious cover fraction * = P =	0.54	inches												
26		F -	32	Inches							-					+
27			8034	Ibs.												
-		LN TOTAL PROJECT =		IDS.		-										
28	The values of	entered in these fields should be for the total project area	-			-						-				+
29															_	4
30	Nur	nber of drainage basins / outfalls areas leaving the plan area =	1													+
31									-							4
32																
	2. Drainage Ba	asin Parameters (This information should be provided for	each basin):				-		-							4
34 35 36		Drainage Basin/Outfall Area No	1													÷
36		Drainage basin/Outian Area No														÷
37		Total drainage basin/outfall area =	15.00	acres												
88		velopment impervious area within drainage basin/outfall area =	0.00	acres												
39		velopment impervious area within drainage basin/outfall area =	8.00	acres												1
10	Post-devel	opment impervious fraction within drainage basin/outfall area =	0.53						_							+
11		Lu THIS BASIN =	6963	lbs.		_		-	-		-				_	4
2																

Example:

Site Data:	Determine Required Load Removal Based on the Entire Project		
	County =	Williamson	
	Total project area included in plan * =	9.50	acres
	Predevelopment impervious area within the limits of the plan * =	0.00	acres
Total p	ost-development impervious area within the limits of the plan* =	7.60	acres
	Total post-development impervious cover fraction * =	0.80	
	P =	32	inches
	L _{M TOTAL PROJECT} =	6615	lbs.

Table 1 - Impervious Cover Table

Impervious Cover of Proposed Project	Sq. Ft.	Sq. Ft./Acre	Acres				
Structures/Rooftops	43,560	÷ 43,560 =	1				
Parking	87,120	÷ 43,560 =	2				
Other paved surfaces	200,376	÷ 43,560 =	4.6				
Total Impervious Cover	331,056	÷ 43,560 =	7.60				
Total Impervious Cover 7.60 ÷ Total Acreage 9.50 X 100 = 80% Impervious Cover							

9

Step 1: The Required Load Reduction for the <u>total project</u>:

4. The Demuire different Deduction for the total projects	Calaulatiana fu			Dama 0.07.4	0.00		
1. The Required Load Reduction for the total project:	Calculations fro	om RG-348		Pages 3-27 to	0 3-30		
Page 3-29 Equation 3.3: L _M =	27.2(A _N x P)						
where: L _{M TOTAL PROJECT} =	Required TSS	removal resu	lting from the propose	d development	= 80% of	increased lo	oac
A _N =	Net increase in	impervious a	area for the project				
P =	Average annua	I precipitation	, inches				
Site Data: Determine Required Load Removal Based on the Entire Project	t						
County =	Williamson						
Total project area included in plan * =	9.50	acres					
Predevelopment impervious area within the limits of the plan * =	0.00	acres					
Total post-development impervious area within the limits of the plan* =	7.60	acres					
Total post-development impervious cover fraction * =	0.80						
P =	32	inches					
L _{M TOTAL PROJECT} =	6615	lbs.					
* The values entered in these fields should be for the total project area.							

Pre-existing IC:

"Predevelopment impervious area within the limits of the plan"

The impervious cover on site prior to rule implementation.*

9-1-1977	RZ for Kinney, Walden, Medina, Bexar, Comal, and Hays Counties
7-2-1986	RZ for Williamson County
3-21-1990	RZ for Travis County
6-1-1999	CZ in all EAPP Counties

*Must be present at time of site assessment

Step 2

Specific to the drainage basin(s), NOT the entire project.

Please note that the L_M value in Step 2 is for one drainage basin. This value can be met via overtreatment- more on that later.

Step 2

2. Drainage Ba	ich basin):		
	Drainage Basin/Outfall Area No. =	?	
		44.00	
	Total drainage basin/outfall area =	11.00	acres
Pred	evelopment impervious area within drainage basin/outfall area =	0.00	acres
Post-d	evelopment impervious area within drainage basin/outfall area =	7.60	acres
Post-deve	0.69		
	L _{M THIS BASIN} =	6615	lbs.

Step 2 – further examples (multiple drainage basins)

2. Drainage Basin Parameters (This information should be provided for each basin):								
	Drainage Basin/Outfall Area No. =	Drainage Basin 1						
	Total drainage basin/outfall area =	12.00	acres					
Pred	evelopment impervious area within drainage basin/outfall area =	0.00	acres					
Post-d	evelopment impervious area within drainage basin/outfall area =	4.00	acres					
Post-deve	0.33							
	L _{M THIS BASIN} =	3482	lbs.					

2. Drainage Basin Parameters (This information should be provided for each basin):								
Drainage Basin/Outfa	all Area No. =	Drainage Basin 2						
Total drainage basin	/outfall area =	5.00	acres					
Predevelopment impervious area within drainage basin	/outfall area =	0.00	acres					
Post-development impervious area within drainage basin	/outfall area =	3.60	acres					
Post-development impervious fraction within drainage basin	/outfall area =	0.72						
	L _{M THIS BASIN} =	3133	lbs.					

Step 3

3. Indicate the	proposed BMP Code for this basin.			
		Proposed BMP =	Wet Basin 💦	
		Removal efficiency =	93	percent

3. Indicate the	proposed BMP Code for this basin.			
		Proposed BMP =	Sand Filter	
	Rer	noval efficiency =	89	percent

3. Indicate the	proposed BMP Code for this basin.			
		Proposed BMP =	Vegetated Filt	er Strips
		Removal efficiency =	85	percent

Step 4

4. Calculate Ma	ximum TSS Load Removed (L _R) for this Drainage Basin by	the selected E	<u>3MP Type.</u>			
	RG-348 Page 3-33 Equation 3.7: L _R =	(BMP efficience	y) x P x (A _I x 3	34.6 + A _P x 0.54)		
where:	A _c =	Total On-Site of	Irainage area	in the BMP catchment	area	
	A _I =	Impervious are	a proposed ir	the BMP catchment a	area	
	A _P =	Pervious area	remaining in t	he BMP catchment are	ea	
	L _R =	TSS Load rem	oved from this	s catchment area by th	e proposed Bl	MP
	A _c =	11.00	acres			
	A _i =	7.60	acres			
	A _P =	3.40	acres			
	L _R =	7880	lbs			

L_R Represents the maximum amount of TSS that can be removed by the BMP in the drainage basin.

*Step 4 should match step 2 unless preexisting IC is present and will remain in tact

Step 5 – Desired Lm

5. Calculate Fraction of Annual Runoff to Treat the drainage basin / outfall area						
	Desired L _{M THIS BASIN} =	6615	lbs.			
	F =	0.84				

Desired L_M can be thought of as the design of the BMP

F-Value = Desired L_M / L_R

F-Values greater than 1 are not approvable.

F-Values are asymptotic relative to pond sizing.

Step 6 - Calculate Capture Volume required by the BMP Type for this drainage basin / outfall area.

6. Calculate Capture Volume required by the BMP Type for this drainage b	oasin / outfall a	area.
Rainfall Depth =	1.26	inches
Post Development Runoff Coefficient =	0.50	
On-site Water Quality Volume =	24990	cubic feet
	Calculations fr	om RG-348
Off-site area draining to BMP =	0.00	acres
Off-site Impervious cover draining to BMP =	0.00	acres
Impervious fraction of off-site area =	0	
Off-site Runoff Coefficient =	0.00	
Off-site Water Quality Volume =	0	cubic feet
Storage for Sediment =	4998	
Total Capture Volume (required water quality volume(s) x 1.20) =	29988	cubic feet

In this example, there is no offsite IC.

Step 6 - Calculate Capture Volume required by the BMP Type for this drainage basin / outfall area.

6. Calculate Capture Volume required by the BMP Type for this drainage basin / outfall area.							
Rainfall Depth =	1.26	inches					
Post Development Runoff Coefficient =	0.50						
On-site Water Quality Volume =	24990	cubic feet					
	Calculations fr	om RG-348					
Off-site area draining to BMP =	5.00	acres					
Off-site Impervious cover draining to BMP =	0.00	acres					
Impervious fraction of off-site area =	0.00	Ī					
Off-site Runoff Coefficient =	0.02						
Off-site Water Quality Volume =	457	cubic feet					
Storage for Sediment =	5089						
Total Capture Volume (required water quality volume(s) x 1.20) =	30537	cubic feet					

In this example, there is off-site area draining to the BMP, but not off-site IC.

Next Step: BMP-Specific

TEXAS CO

ENVIRON

11. Wet Basins		Designed as Required in RG-348			Pages 3-66 to			
	Required capacity of Permanent Pool =	29988	cubic feet	Permanent Pool Capacity is 1.20 times the WQV				
	Required capacity at WQV Elevation =	54978	cubic feet	Total Capacity should be the Permanent Pool Capacity				
				plus a second WQV.				

9. Filter area f	or Sand Filters	Designed as R	equired in R	5-348	Pages 3-58 to	o 3-63
	9A. Full Sedimentation and Filtration System					
	Water Quality Volume for sedimentation basin =	35700	cubic feet			
	Minimum filter basin area =	1653	square feet			
	Maximum sedimentation basin area =	14875	square feet	For minimum water depth of 2 fe		et
	Minimum sedimentation basin area =	3719	square feet	For maximum water	depth of 8 fe	et
	9B. Partial Sedimentation and Filtration System					
	Water Quality Volume for combined basins =	35700	cubic feet			
	Minimum filter basin area =	2975	square feet			
	Maximum sedimentation basin area =		•	For minimum water		
	Minimum sedimentation basin area =	744	square feet	For maximum water	depth of 8 fee	et

Next Step: BMP-Specific

Vegetative Filter Strip

4. Ca	iculate Max	ximum TSS Load Removed (L _R) for this Drainage Basin by	the selected E	MP Type.			
		RG-348 Page 3-33 Equation 3.7: L _R =	(BMP efficiency	y) x P x (A _l x	34.6 + A _P x 0.54)		
	where:	A _c =	Total On-Site d	lrainage area	in the BMP catchment	area	
		A _I =	Impervious are	a proposed ir	n the BMP catchment a	area	
		A _P =	Pervious area	remaining in t	he BMP catchment are	ea	
		L _R =	TSS Load rem	oved from thi	s catchment area by th	e proposed Bl	MP
		A _c =	11.00	acres			
		A ₁ =	7.60	acres			
		A _P =	3.40	acres			
		L _R =	7202	lbs			
5.0-1	laulata Era	ation of Annual Dunoff to Treat the drainage basis / suffell					
o. Ca	iculate Pra	ction of Annual Runoff to Treat the drainage basin / outfall	area				
		Desired L _{M THIS BASIN} =	7202	lbs.			
		B CON COL EM THIS BASIN					
		F =	1.00				

Stage Storage Tables: Does the sizing work for your project? NOD Item NOD Response

Overall Pond Storage Table								
Stage (ft msl)*	Area (sf) Incremental Volume (cf) Storage (cf)							
706.50	85.47	0.00	0.00					
707.00	20,348.41	5,108.47	5,108.47					
708.00	76,873.54	48,610.98	53,719.45					
709.00	85,378.23	81,125.89	134,845.33					
710.00	92,681.67	89,029.95	223,875.28					
711.00	100,099.65	96,390.66	320,265.94					
712.00	107,632.15	103,865.90	424,131.84					
713.00	115,279.19	111,455.67	535,587.51					
714.00	123,040.76	119,159.98	654,747.49					
715.00	137,560.00	130,300.38	785,047.87					

		dStorage Table	Overall Pond	
	Storage (cf)	Incremental Volume (cf)	Area (sf)	Stage (ft msl)*
	0.00	0.00	244.54	706.50
	5,415.17	5,415.17	21,416.13	707.00
	24,750.82	19,335.65	55,926.46	707.50
	57,951.67	33,200.86	76,876.97	708.00
	97,540.21	39,588.54	81,477.19	708.50
Permanent Pool Elevation	118,161.98	20,621.76	83,496.91	708.75
	139,272.00	21,110.03	85,383.29	709.00
	182,873.13	43,601.13	89,021.24	709.50
Total Water Quality Volume	205,357.15	22,484.02	90,850.89	709.75
	228,300.36	45,427.22	92,687.65	710.00
	275,567.90	47,267.54	96,382.52	710.50
	324,689.99	49,122.09	100,105.84	711.00
	375,680.85	50,990.87	103,857.62	711.50
	428,554.72	52,873.87	107,637.86	712.00
	483,325.83	54,771.10	111,446.55	712.50
	540,008.39	56,682.56	115,283.70	713.00
1	598,616.64	58,608.25	119,149.30	713.50
	659,164.80	60,548.17	123,043.36	714.00
1	721,667.11	62,502.31	126,965.88	714.50
1	787,798.58	66,131.47	137,560.00	715.00

Accounting Tables

Water	Ultimate	Ultimate			Proposed per this CZP Application (Modification #2)												
Quality	Drainage	Impervious		Se	ction 1	See	ction 2	Se	ction 3	Se	ction 4	Se	ction 5	Se	ction 6	Se	ction 7
Facility	Area	Area	Impervious														
	(acres)	(acres)															
Pond A-2	8.48	4.55	54%	IC per Section	Cummulative IC area	IC per Section	Cummulative IC area	IC per Section	Cummulative IC area	IC per Section	Cummulative IC area	IC per Section	Cummulative IC area	IC per Section	Cummulative IC area	IC per Section	Cummulative IC area
Pond B-2	50.02	23.82	48%														
Pond C-2	27.58	14.55	53%	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)
Pond D-2	17.75	9.38	53%	0.00	0.00	0.56	0.56					1.35		0.00		0.00	
	24.77	12.27	50%	0.00		1.33	1.33	1.00		4.46							
Pond F-2	14.93	7.94	53%	0.00	0.00	0.96	0.96	10.58	11.54	0.00	11.54	2.62	14.16	0.39	14.55	0.00	14.55
				7.33	7.33	0.09	7.43	1.42	8.85	0.00	8.85	0.00	8.85	0.53	9.38	0.00	9.38
	9.41	4.91	52%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.20	4.20	0.16	4.36	7.91	12.27
Swale 1	2.51	1.06	42%	0.00	0.00	0.87	0.87	0.07	0.94	0.00	0.94	0.00	0.94	6.58	7.52	0.42	7.94
Sale 3	1.04	0.63	61%	0.00	0.00	0.00	0.00	0.00			0.00	0.00	0.00	4.91	4.91	0.00	
Untreated	27.34	3.33	12%	1.06		0.00	1.06							0.00		0.00	
				0.00	0.00	0.00	0.00	0.00	0.00	0.63	0.63	0.00	0.63	0.00	0.63	0.00	
Total	183.83	82.44	45%	0.85	0.85	0.55	1.40	1.15	2.55	0.00	2.55	0.00	2.55	0.71	3.26	0.07	3.33
				9.24	9.24	4.36	13.61	14.22	27.84	7.72	35.65	23.47	59.03	13.28	72.31	10.13	82.44

Overtreatment

For those areas which do not drain to a BMP, overtreatment is an option.

For BMPs that have efficiencies greater than 80%, the TSS removed can be applied to meet the L_M requirement.

Overtreatment Example

Overall $L_M = 5,658$ lbs (6.5 acres IC)

The sum of Desired $L_M s = 5,900 lbs > 5,658 lbs = L_M$

DA 1 Drainage basin = 5 acres $L_M = 2611$ lbs TSS 3.00 acres IC Pond 1 $L_R = 2,987$ lbs Pond 1 Desired $L_M = 2,900$ lbs

DA 2 Drainage basin = 7 acres $L_{M} = 2,611 \text{ lbs}$ 3.00 acres IC Pond 2 $L_{R} = 3,018$ lbs Pond 2 Desired $L_M = 3,000$ lbs DA 3 Drainage basin = 3 acres $L_{M} = 435 \text{ lbs}$ 0.50 acres IC $L_{R} = 531 \text{ lbs}$ DA 3 Desired $L_M = 0$ lbs (Does not drain to a BMP)

25

BMPs in Series

Extended Detention into Grassy Swale

19. BMPs Insta	lled in a Series	Designed as R	Required in RG-34	8	Pages 3-32		
	E _{TOT} = [1 - ((1 - E ₁) X (1 - 0.65E ₂) x (1 - 0.25E ₃))] X 100 =	86.38	percent NE	T EFFICIENCY OF	THE BMPs IN	THE SEF	RIES
	EFFICIENCY OF FIRST BMP IN THE SERIES = E_1 =	75.00	percent				
	EFFICIENCY OF THE SECOND BMP IN THE SERIES = E_2 =	70.00	percent				
	EFFICIENCY OF THE THIRD BMP IN THE SERIES = E_3 =	0.00	percent				
	THEREFORE, THE NET LOAD REMOVAL WOULD BE:						
	(AI AND AP VALUES ARE FROM SECTION 3 ABOVE)						
	L _R = E _{TOT} X P X (A _I X 34.6 X A _P X0.54) =	7318.96	blbs				
	3. Indicate the proposed BMP Code for this ba	isin.					
		Dr	apacad BMD	= Extended D	Infontion		
			oval efficiency		38 percent		
ENVIRONMENTAL QU							

Vaults

Calculations should be submitted by the proprietary vendor.

Optional Enhanced Measures – TCEQ RG-348A

Differences from standard plans:

- Memorandum Of Understanding
- Stream buffers
- Geologic Assessment required
- Detention
- No pre-rule IC allowance
- Calculations

Optional Enhanced Measures – TSS Load Removal Calculations $\overline{\text{TCEQ RG-348}} \overline{\text{A(OEM)}}$ **TCEQ RG-348**

 $L_{\mu} = (0.8 \times 0.226)(A \times P \times 0.9 \times 170)$ Equation 4.2

Where:

 L_M = Required TSS removal (pounds) A =Impervious area (acres) P = Average annual precipitation (inches)

This equation simplifies to:

Equation 4.3 $L = 27.7(A \times P)$

Where:

L =Required TSS removal (pounds) A =Impervious area (acres) P = Average annual precipitation (inches) Equation 3.2 $L_{\rm M} = (0.8 \times 0.226)(A_{\rm N} \times P \times 0.9 \times 170 - A_{\rm N} \times P \times 0.03 \times 80)$

Where:

 L_M = Required TSS removal (pounds) A_N = Net increase in impervious area (acres) P = Average annual precipitation (inches)

This equation simplifies to:

Equation 3.3

 $L_{\rm M} = 27.2(A_{\rm N} \times P)$

Optional Enhanced Measures – TSS Load Removal Calculations

TCEQ RG-348

Equation 3.11 Runoff Coefficient = $1.72(IC)^3 - 1.97(IC)^2 + 1.23(IC) + 0.02$

Where: IC = fraction of impervious cover

TCEQ RG-348A

Equation 4.8 Rv = 0.05 + 0.0085(IC)

Where:

IC = Percent impervious cover

6. Calculate Capture Volume required by the BMP Type for this drainage basin / outfall area.										
	Rainfall Depth =	1.26	inches							
	Post Development Runoff Coefficient =	0.50								
	On-site Water Quality Volume =	24990	cubic feet							

Summary of important values

- L_M: TSS Removal **REQUIRED** for entire project (80% removal)
- Pre-existing IC: IC that was in place **BEFORE** the Edwards Aquifer Protection Program required treatment
- L_R : TSS Load available for removal from one drainage basin
- **DESIRED** L_M : TSS Removal applied to this BMP in this project (BMP design; summation for multiple BMPs)
- Offsite pervious and impervious cover: Volume must be accounted for

Common mistakes

- Step 1 values do not reflect values in Table 1
- Predevelopment IC means pre-rule, and must be in place at time of site assessment
- L_R interpreted to be the design
- F value is greater than 1.0
- Not signed/sealed/dated by project engineer

If you don't understand the spreadsheet, ask questions before you submit! ^(C)

James "Bo" Slone, P.G. (512) 239-5711 james.slone@tceq.texas.gov

Savannah "Savannah" Finger (512) 239-4000 savannah.finger@tceq.texas.gov

EAPP General phone numbers R11: (512) 339-2929 R13: (210) 490-3096

It's the Only One We've Got! Take Care Of Texas.org A PROGRAM OF TCEQ