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Tasks of a job

>
Task Execution Time




Defining Stragglers

Tasks of a job

>
Task Execution Time




Defining Stragglers

Tasks of a job

>
Task Execution Time




Defining Stragglers

2
W

Tasks of a job €

i ¢

|u|

>
Task Execution Time




Impact of Stragglers

Presence of Stragglers in real-world production level traces™:

*captured for over 6 months from about 4000 machines in total




Impact of Stragglers

Presence of Stragglers in real-world production level traces™:

When replayed using SWIM™ on a 50 node EC2 cluster....

Workload Stragglers

Facebook 2009 (FB2009)

Facebook 2010 (FB2010)

Cloudera’s Customer b (CC_b)

Cloudera’s Customer e (CC_e)

*captured for over 6 months from about 4000 machines in total

"ChenY, et al, The Case for Evaluating MapReduce Performance Using Workload Suites, MASCOTS'| | ’




Impact of Stragglers

VWorkload Stragglers

Facebook 2009 (FB2009)

Facebook 2010 (FB2010) Threshold
= 1.3
Cloudera’s Customer b (CC_b) * median

Cloudera’s Customer e (CC_e)
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Wrangler: Classification for Predicting
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Wrangler: Classification for Predicting
Stragglers

For every workload!!

For every node!

Build a model:
=

{Utilization Counters,
Straggler/ }

—> |Learning —— Classifier

N

A training data point corresponds to a task
executed by a node




Why model every {node, workload} pair?

Key observation

Straggler causing factors vary across nodes
and across time!

« Complex task-to-node interactions

« Complex task-to-task interactions

Why?

« Heterogeneous clusters

- Heterogeneous task requirements

14




So, model every {node, workload} pair!

FB2009

FB2010
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Model Builder: Training data collection
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However....

Real-world production clusters could contain
over 1000 nodes

* Scalability!
— Need to train too many models separately

— Prohibitively long training data capture duration
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Our Proposal

Observations:

* Underlying modeling task remains the same

* Learning from other similar tasks should help
— Reduce training data capture time

— Improve accuracy by generalizing better




Our Proposal

Observations:

* Underlying modeling task remains the same

* Learning from other similar tasks should help
— Reduce training data capture time

— Improve accuracy by generalizing better

|dea

Share data across nodes and workloads:
Multi Task Learning




Model Builder: Training data collection
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Model Builder: Training data collection

Workload A

Job queue

Combined: 5

training data
points!!
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Regularized Multi-Task Learning”

* [ learning tasks
* |nstead of one w, we need to learn a w for each of the T

tasks
Wi = W + V¢

T
A :
min Ao||wo|? + Tl d |lve||* + Loss function

Wq,V¢,b
0,Vt t—1

"Evgeniouy, et al,, KDD 2004
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Proposed Formulation

Wi = W + V¢ + Wy

Common across the tasks in
a group, denoted by g

Wi = W0 + Vi + Wgpy + Wssd + ...
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Proposed Formulation

Wi = Wo + V¢ + Wy

P
Wi — Wog E Ve § Z Wp,gp(t)

All tasks belong to the same p=1 R{—J

Shatp Weight vector of the g-th group
— of the p-th partition

Each task is its own group




Proposed Formulation

P Gp

] —~ —~ 2 :
min » » A, 4||Wp4|["+ Loss function
Wy g,b

p=1 g=1




Reduction to a Standard SVM

With an appropriate change of variable,

f & m+

mln )\HWH2 + Z Z §it

oy R —d

S.t.
yir (W d(xi) +b) > 1 — & Vi, ¢t
Eit = 0 Vi,t
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Application to straggler avoidance:

FB2009 —> Vl.

FB2010
CC e
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Proposed Formulation: Predicting Stragglers

The corresponding training problem is then,

min g ||wo||?
w,b

T

=

+ = Y |Ivell* + Loss function
=1
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Evaluation |: Prediction Accuracy
Workload: FB2009
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Evaluation |: Prediction Accuracy
Workload: FB2009

Wrangler B Qur formulation
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Evaluation |l: Faster Jobs

We need only a sixth of training data!




Evaluation |l: Faster Jobs

We need only a sixth of training data!

......e., 4 hours — 40 minutes!!




Conclusions

Proposed an MTL formulation that:

— Captures structure of learning tasks




Conclusions

Proposed an MTL formulation that:

— Captures structure of learning tasks

Showed Benefits of MTL on a real-world problem:
— Reduces job completion times further
— Generalizes better

— Needs only a sixth of training data






