Biophysical Interactions of Plankton with Environments: From Individual Locomotion to Population Dynamics

Jian Sheng SIAM Conference on Mathematics of Planet Earth Philadelphia, Pennsylvania USA Texas A&M University

Molaei & Sheng, et al., Phys. Rev. Lett, 2014

Objective: Mechanistic Understanding of Plankton-Environment Interaction

Ganor, Sheng, et al., Smart Material & Structure 2013

Methods: Engineering Complex Environment for Mechanistic Studies

Methods: Digital Holography Capturing 3D Planktonic Motion

Numerical Reconstruction:

$$\begin{aligned}
\frac{\partial^{b}}{\partial r}(x, y, z) &= \iint_{\lambda_{y,y_{y}}} \frac{\partial^{b}}{\partial p}(\xi, \eta, z = 0) \left[-\frac{\partial G}{\partial n}(x - \xi, y - \eta, z) \right] d\xi d\eta \\
\text{Rayleigh-Sommerfeld Near Field Diffraction} \\
-\frac{\partial G}{\partial n}(x, y; z) &= \frac{1}{\lambda} \frac{\exp\left(-jk\sqrt{x^{2}+y^{2}+z^{2}}\right)}{\sqrt{x^{2}+y^{2}+z^{2}}} \cos \theta
\end{aligned}$$

$$\begin{aligned}
\frac{\partial^{b}}{\partial n}(x, y; z) &= \frac{\exp\left(jkz\right)}{j\lambda z} \exp\left\{j\frac{k}{2z}\left[\left(x^{2}+y^{2}\right)\right]\right\} \\
&= \frac{\partial G}{\partial n}\left(x, y; z\right) = \frac{\exp\left(jkz\right)}{j\lambda z} \exp\left\{j\frac{k}{2z}\left[\left(x^{2}+y^{2}\right)\right]\right\} \\
\end{aligned}$$

No difference in accuracy!!!

A Sample Reconstruction using DHM

Study I: A Mixotrophic Dinoflagellate Stuns Prey Prior to Ingestion – Key Predator Prey Mechanism for Harmful Algal Bloom

Karlotoxins

Effects of Purified Karlotoxins on Prey

Sheng et al. PNAS, 2010

Bachvaroff et al., J. of Phycology, 2009

Karlotoxin as Allelochemicals or ... ? – What is Ecological Function

Predator-Prey Interactions using 3D DHM

Culture	Concentration (cells/ml)	Toxicity	Predation Level	prey/predator ratio	No. of cells examined	Length (µm)	Width (µm)
1974 (alone)	120,000	KmTx-1	High	0	981	8-10	6-8
1974 + S. major (h0)	350,000	High		1:1	1164		
BM1 (alone)	70,000	KmTx-2	Medium	0	939	6-8	4-5
BM1 + S. major (h0)	120,000	Medium		1:1	2328		
<i>BM1</i> + <i>S. major</i> (h5)	110,000			1:1	968		
2064 (alone)	70,000	KmTx-2	Low	0	828	12-15	8-10
2064 + S. major (h0)	210,000	Low		1:1	991		
<i>2064</i> + <i>S. major</i> (h5)	190,000			1:1	968		
MD5 (alone)	170,000	None	None	0	1040	8-10	6-8
<i>MD5</i> + <i>S. major</i> (h0)	275,000			1:1	2234		
<i>MD5</i> + <i>S. major</i> (h5)	100,000			1:1	1804		
S. Major	75,000	None			1502	6-8	
S. Major + Methanol (h5)	75,000				1611		
S. Major + KmTx-1 (h5)	75,000		2.5ng mL ⁻¹		2253		
S. Major + KmTx-2 (h5)	75,000		2.8ng mL ⁻¹		1301		

Experimental Conditions

- Examine swimming behavior of toxic and nontoxic K. veneficum strains prior and after mixing with prey
- Examine swimming behavior of Storeatula major prior and after mixing with predator
- Measure swimming characteristics of S. major in the presence of exogenous toxins

Effects on Swimming Trajectories by Predation (Toxic Strains only)

Superposition of reconstructed in-focus holographic images (only one of every five exposures is shown for clarity): Gray trajectories - tracks of prey, *S. major*. (only), after introduction to a *K. veneficum*, BM1 suspension; Green - highlighted samples of *S. major* trajectories; Red - few sample *K. veneficum* BM1 (predator) trajectories (rest of the BM1 tracks are not shown). (a) Shortly after mixing; (b) 5 hours later; (c and d) Captured *S. major* cells (smaller ones) being ingested by a BM1 cell: (c) a reconstructed hologram, and (d) SEM. (e and f) Pair of *K. veneficum*, BM1 cells interacting (possibly cell division) : (e) reconstructed hologram, (f) SEM. Vertical linear tracks belong to immotile prey; convection by the background flow causes their linear motion, which is subtracted while calculating velocity. Scales: 100 mm in a & b, and 5 mm in c & e. The complex motions of motile cells, and increasing fraction of immotile ones with time are evident

Substantial Difference in Swimming Characteristics among Strains

Substantial variations in swimming characteristics among strains

Variability in 3-D Trajectories

Colored coded by velocity magnitude.

Predation Mediated Changes in Swimming Characteristics

- All toxic (predatory) strains slow down in the presence of prey
- o 1974 becomes bi-modal. 23% of the population slows down engaging in the process of ingesting prey.

Karlotoxins Immobilize Prey !

Karlotoxins immobilize prey

Swimming Induced Dispersion while intoxication

Karlotoxins slow down prey

	K. veneficum (motile)				S. major (motile)					
Steen in	$V \pm \sigma_v$	$R \pm \sigma_{R}$	$\omega \pm \sigma_{\omega}$	D _{zz} /v	Dzz/Dii	$V \pm \sigma_v$	$R \pm \sigma_{R}$	$\omega \pm \sigma_{\omega}$	D_{zz}/v	Dzz/ Dii
Strain	(µm/s)	(μm)	(rad/s)		(i=x,y)	(µm/s)	(µm)	(rad/s)		(i=x,y)
S. major						86.4±47.0	5.8±6.1	7.3±4.0	0.45	1.8
control MD5	81.3±44.9	4.57±4.9	6.98±3.7	2.67	9.1					
<i>MD5 + S. major</i> (h0*)	84.5±48.6	4.6±5.3	6.9±2.2	2.51	8.9	85.2±46.1	5.1±5.9	7.2±3.8	0.45	1.9
<i>MD5 + S. major</i> (h5+)	82.3±50.1	4.7±5.1	6.8±3.0	2.57	9.0	86.8±40.1	6.1±4.8	7.8±2.5	0.45	1.7
KmTx-1 1974	102.3±56.4	9.2±8.6	5.67±2.9	1.01	2.0					
1974+ S. major (h0)	160.4±59.6	16.2±5.7	8.7±6.1	0.85	1.6	42.7±37.7	2.9±4.3	8.1±4.1	0.28	1.5
KmTx-2 BM1	111.2±55.15	9.3±8.8	6.7±3.1	2.05	2.6					
BM1+ S. major (h0)	81.8±55.5	6.5±7.4	6.4±3.0	1.15	2.0	65.1±41.9	4.1±4.8	6.9±3.2	0.45	6.3
<i>BM1+ S. major</i> (h5)	92.7±43.6	8.7±7.5	5.6±2.7	1.28	2.5	69.8±44.6	5.1±6.0	6.7±3.3	0.5	1.7
2064	80.9±38.9	6.5±6.8	5.0±2.7	0.78	3.2					
2064 + S. major (h0)	37.8±40.1	3.76±5.0	6.8±3.8	0.64	3.1	81.7±44.4	4.7±5.2	6.9±3.5	0.72	4
2064+ S. major (h5)	59.4±35.1	4.7±5.1	5.5±3.0	0.61	3.1	63.2±41.4	4.2±5.6	6.4±3.0	0.25	1.4

Summary of Motilities of motile K. veneficum & S. major

Conclusion

Karlotoxins serve as a prey capturing instrument predation promotes mixotrophic growth

Future Questions

- How are toxins delivered direct contact or close proximity?
- What are the effects of environmental factors; turbulence, shear, etc?
- Is the observed function universal in mixotroph?

Study II: Flow Shear Induced Crossstream Migration by a Green Algae – Potential Mechanism for Thin Layer Formation and Harvest

Flow Environment: Shear Flows in µFluidics

Overlapped In-focus Cell Images over Entire Depth (No shear)

Rheotaxis Behavior Observed at Higher Flow Shear (>30 1/s)

All dimensions are in microns

All dimensions are in microns

Prevalent Rheotaxis of Microbes in a Shear Flow: microalgae surfs along flow vortices

Histogram of Swimming Velocities of Dunaliella

Produced with VideoMach www.videomach.com

Passive Spheroids immersed in a viscous shear flow undergo periodic motion

2.27 s

Microalgae under Shear Does Not Reorient and Disperse as Passive Particles

Further Evidence Rheotaxis

Dispersion

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Dispersion

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Effects of Rheotaxis on Dispersion

Study III: Escape Kinematics of a Nauplius at Various Temperature

Temperature changes viscosity that affect effectiveness of swimming

Experimental Setup

Gemmell B., Sheng. J, et al. PNAS 2013

Escape Characteristics & Compensatory Mechanism

1.0

0.5

30°C 30°C+MC 10°C

30°C+MC

10°C

30°C

6

4

2 ·

0

- Strokes show clear overlap in high temperature but low viscosity, but reduced the overlap in low temperature but high viscosity.
- Viscosity change alone does not trigger the change in escape kinematics

Resistance Force Modeling

 $d\theta \downarrow 1 / dt = -\omega \downarrow an G(t-t)$

Mean statistics are averaged over ~30 samples per experimental condition and accompanied by SDs.

Appendage Kinematics: Simulations vs Experiments