Matching Supply and Demand via 2-Phase Delayed Distribution at Yedioth Group: Models, Algorithms and IT

Assaf Avrahami Yedioth Group & Technion, Israel

Yale Herer IE&M, Technion, Israel

Retsef Levi Sloan School of Management, MIT

Distribution Networks

- » Distribution networks are central to many supply chains
- » Design: Topology, shipping modes, inventory (pooling), IT & coordination
- » Operations: Production & shipment decisions
- » Today:
 - New concept <u>2-Phase Delayed Distribution</u> --- enabled by new models and algorithms, process redesign and IT changes
 - Field implementation in the print industry with significant financial impact! Another implementation in the food industry (specialty bread)

'Old' Distribution Model

Production level Q^0 : per-unit cost c

Shipments y_i

Demand per-unit lost sales cost *b*

Scrapping of returns: per-unit cost *h*

New Distribution Concept

» Main Ideas:

- Each sales agent holds pooled inventory and deliver in-cycle (mid-week) shipment to respective retailers

- Mid-week shipment will be based on demand information from the first half of the week

- How to obtain information? – EDI and RFID systems

2-Phase Delayed Distribution

 2^{nd} Shipments y_i^1 based on sales information

Initial Shipments y_i^1 and Q^1

period demand per-unit lost sales cost *b*

Mathematical Formulation

Two-stage stochastic program with recourse:

$$P_{01} = \underset{Q^0,Q^1,y_1^1,\ldots,y_n^1}{\operatorname{Minimize}} \quad cQ_0 + E \bigg[P_2 \bigg[Q^1,y_1^1 - D_1^1,\ldots,y_n^1 - D_n^1 \bigg] \bigg]$$
 s.t.
$$\begin{array}{c} \text{Production cost} \\ Q^1 + \sum_1 y_i^1 = Q^0 \end{array} \quad \begin{array}{c} \text{Total production} \\ Q^1,y_i^1 \geq 0, \text{ for each } i \end{array}$$

Production level = Q^0 Initial Shipments = y_i^1 Undistributed quantity = Q^1

$$P_{2}(Q^{1}, y_{1}^{1} - d_{1}^{1}, \dots, y_{n}^{1} - d_{n}^{1}) = \underset{L_{i}, Q_{i}^{2}, y_{i}^{2}}{\text{Minimize}} \sum_{i} E \left[b \left(D_{i}^{2} - y_{i}^{2} \right)^{+} + h \left(y_{i}^{2} - D_{i}^{2} \right)^{+} + b L_{i} \right]$$

Lost sales of retailer i in first period = L_i

2nd Shipments =
$$Q_{ec{i}}^2$$

Inventory level at the beginning of period 2 after 2^{nd} shipment = y_i^2

$$\sum_{i} E \left[b \left(D_i^2 - y_i^2 \right)^+ + h \left(y_i^2 - D_i^2 \right)^+ + b L_i \right]$$
s.t.

$$\sum_i Q_i^2 = Q^1$$
 Total 2nd shipments

$$L_i \ge d_i^{\scriptscriptstyle 1} - y_i^{\scriptscriptstyle 1}$$
 , for each i Lost Sales

$$y_i^2 = y_i^1 - d_i^1 + Q_i^2 + L_i^2$$
 , for each i

Flow 6

$$L_i, Q_i^2 \ge 0$$
 , for each i

Model Analysis

Theorem (Avrahami, Herer, L. ['13]):

- » P_2 () is jointly convex in $Q^1, x_1, ..., x_n$ and so is $E\left[P_2\left(Q^1, y_1^1 D_1^1, ..., y_n^1 D_n^1\right)\right]$ in $Q^1, y_1^1, ..., y_n^1$
- » P_{01} is jointly convex in $\left(Q^0,Q^1,y_1^1,...,y_n^1\right)$

Literature Review

» The value of information in supply chains (special focus on RFID)

Lee et al ['00,'04], Liu & Miao ['06], Aykut et al ['06], Lee & Ozer ['07], Doukidis ['07], and more!

» Pooling strategies (inventory pooling, delayed differentiation, postponement, transshipment...)

Eppen ['79], Eppen&Schrage ['81], Jackson&Muckstadt ['89], Netessine et al ['02], Corbett&Rajaram ['04], Dong&Rudi ['04], Ho&Tang ['98], Garg&Lee ['99]. Groenevelt&Rudi ['00], Rudi ['00], Raman at al ['97],....and more!

» Few papers on replenishment interval optimization

Allen ['58], McGavin at al ['93, '97], Shang ['10]

» Rich literature on the One-Warehouse-Multi-Retailer problem

3

Solution Approach

» Use stochastic gradient descent method:

$$P_{01} = \text{Minimize} \quad cQ_0 + E\left[P_2(Q^1, y_1^1 - D_1^1, \dots, y_n^1 - D_n^1)\right]$$

» Need to obtain unbiased estimator of subgradient of:

$$E\left[P_{2}\left(Q^{1},y_{1}^{1}-D_{1}^{1},...,y_{n}^{1}-D_{n}^{1}\right)\right]$$
 at any point $\left(Q^{0},Q^{1},y_{1}^{1},...,y_{n}^{1}\right)$

» For discrete and finite support demands $oldsymbol{D}_i^2$, the second stage cost function

$$P_2(Q^1, y_1^1 - d_1^1, \dots, y_n^1 - d_n^1)$$
 = Totally unimodular linear program (LP)

for each realization

» Solve dual to obtain unbiased estimate of subgradient

Solution Procedure - Overview

Optimize P_{01} via subgradient optimization:

- 1. Start with any solution
- 2. Estimate subgradient at current point:
 - Samples from distributions D_i^1
 - Solve dual of $P_2(\phi)$, for each sample
 - Average respective dual solutions to estimate subgradient
- 3. Step in correct direction
- 4. If not done, update step size and go to 2

Pilot Implementation - Why?

- » Research department skeptical:
 - > How can less be better?
- » Sales agents suspicious:
 - > How can less be better?
 - > Salary dependent on sales
- » Proof of concept in real world is required
- » 5 week pilot!

Pilot Implementation Scope

- » One magazine: L'isha
 - > Weekly (not daily)
 - > High volume
- » 50 selected retailers
- » 10 sales agents:
 - > Each serving 5 retailers for the pilot
 - > Holds the undistributed magazines
 - > Supplementary distribution during regular midweek visit. No added cost!
 - > Document in-week demand

Pilot Implementation Results

Large Scale Implementation Details

» After pilot decision support tool was implemented for over 15 magazines!

» Model is solved on a weekly basis. Recommendations modified manually.

» Currently implemented in 400 EDI enabled (mostly larger) retailers (POS data once a day)

» Sales agents compensated for sales and returns

Large Scale Implementation Results

- » Results similar to pilot
- » 10–15% reduction in production levels:
 - > Research department no longer interfering
- » ~ 35% reduction in returns
- » Sales levels unaffected/slightly higher

Optimizing Review Epochs

What is the **best timing** for the review/distribution epoch?

- » In simulations, single optimal location = 42% 96% of the benefits of full pooling!
- » Optimal location is rarely (never) in the middle changed replenishment day to Thursday!
- Estimated total savings:\$250K from 400 retailers, projected \$1M from entire network

Scaling - RFID Pilot

- » Pilot RFID technology to enable implementation throughout entire network
- » 5 RFID stands with tags on magazine (plastic bag)
- » Model proven, technology being piloted:
 - > Same operational and optimization model
 - > Technology is being evaluated

Magazine with RFID Tag

Smart Stand

Smart Stand with Magazines

Weekend (Daily) Newspaper Pilot

» Most costly and profitable product

» Timescale reduced from 1 week to ~6 hours

» Ten retailers, two sales agents:

- Subperiod 1: 8:00 – 11:00

- Subperiod 2: 11:00 – 14:00

» Similar savings – Huge potential impact!

» Added visit with additional costs

Specialty Bread Products

» Same model implemented by 3ID for a bakery enabled by RFID solution

» Similar characteristics: weekly distribution, perishable, full refund

* Pictures provided by 3ID

Some Thoughts on RFID Research

- » RFID costs real money
- » Much RFID research can be termed "MORE OF THE SAME"

- » Is RFID just a better barcode?
- » The money is in changing the operational paradigm
- » Models (like ours) can answer the question: "Is RFID worth the investment?"

Summary

- » New pooling concept: Delayed 2-Phase Distribution
- » Applicable to print industry (documented significant impact)
- » Applicable to other industries (food)
- » Models for
 - > Day-to-day operational decisions
 - > Strategic decisions: investment in IT
- » One additional distribution close to full pooling

Questions
Comments
Remarks
Observations
Suggestions
Criticisms

Assaf Avrahami aa@yit.co.il

Yale T. Herer yale@technion.ac.il

Retsef Levi retsef@mit.edu