Active Multi-task Learning via Bandits

Meng Fang and Dacheng Tao
University of Technology, Sydney

Outline

- Motivation
- Connection between Active learning and Bandit
- Algorithm
- Experiments
- Conclusion

Motivation

 Labeling is expensive. The most timeconsuming and costly part is usually the collecting of data.

Motivation

 Labeling instances for one task can also affect the other tasks especially when the task has a small number of labeled data.

Related work

- EER: expected error reduction
- VIO: summarize uncertainties for each task

Related work

- EER: expected error reduction
- VIO: summarize uncertainties for each task
- Ours: use bandit framework

Active learning vs. Multi-armed bandit

Active learning

- Select an instance from a pool
- Query the label of the selected instance
- Train a new classifier based on new labeled data
- The goal: obtain a classifier with good performance

Bandit - Multi-armed bandit

- Select an arm from a set of arms
- Get the payoff of the selected arm
- Update the historical payoff records for each arm
- The goal: obtain the arm with high payoffs

The similar things between active learning and multi-armed bandits

Active learning	Multi-armed bandits
Hypothesis (classifier)	Arm
Performance	Payoff
Make the query for a instance and get the performance based on the new labeled train dataset	Pull the arm and obtain the payoff

Under the bandit framework

- We formalize the active learning algorithm for multi-task learning under the bandit framework.
- Hypothesis arm
- Risk payoff
- Trade-off between exploration and exploitation: confidence bound of hypothesis

Trade-off: confidence of hypothesis

Confidence: distance to the ground truth.

Algorithm

- Risk and confidence
- Trade-off between risk and confidence
- Two goals: lower risk and lower confidence
- Provide an implementation of our approach based on multi-task learning with trace-norm regularization method.

Arm - hypothesis

- In the multi-task learning, we consider the hypothesis as the arm.
- Given a dataset, we solve the optimization problem:

$$h = \underset{h \in H}{\operatorname{arg\,min}} \, \hat{R}(h) + \mu \|W\|_*$$

Payoff - Risk

The risk

$$R(h) = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(x,y) \sim \mu_m} [\ell(h(x), y)]$$

Average empirical risk.

Confidence bound

Confidence bound

$$CB = \sqrt{\frac{ln(1/\sigma)}{2\overline{n}M}} + 2LB\left(\sqrt{\frac{\|\hat{C}\|_{\infty}}{\overline{n}}} + \sqrt{\frac{2(\ln(\overline{n}M) + 1)}{\overline{n}M}}\right)$$

 It equates the excess risk of multi-task learning algorithm with trace-norm regularization.

Two criterions

 Consider both the risk and the corresponding confidence, we want to find a hypothesis which can be

$$h = \underset{h \in H}{\operatorname{arg\,min}} R(h) + C(h)$$

 Then we want to minimize both the risk and the upper confidence bound.

Trade-off between risk and confidence

- For the multi-task learning problem, firstly, we must learn a large enough candidate set to contain hypothesis set with low risk.
- Then we should also learn a small enough hypothesis set that we can find such hypothesis close to true hypothesis.

Active learning algorithm

Experiments

 We evaluate our algorithm on a synthetic dataset and three real multi-task datasets: Restaurant & Consumer dataset, Dermatology dataset and School dataset.

Baselines:

ERR: expected error reduction based method.

Baselines:

 VIO value of information algorithm, which summaries the uncertainty of each task using traditional uncertainty strategy, defined as

$$VOI(Y, x) = \sum_{y} p(Y = y|x)R(p, Y = y, x)$$

 where R is the rewards function and we use R(p, Y = y, x) = -logp(Y = y|x). This strategy is to select the instance which has the most uncertainty information over all tasks;

Baselines:

 Random: passive learning algorithm, which randomly selects instances from dataset.

Synthetic data

Performance comparison:

Restaurant & consumer data

Performance comparison

Dermatology data

Performance comparison

School data

Performance comparison

Conclusion

- Propose a new active learning framework for multi-task learning, named active multi-task learning via bandits.
- Consider the trade-off between minimizing the risk and improving the confidence bounds for the hypothesis.
- Provide an implementation of our approach based on multi-task learning with trace-norm regularization method.

Q & A

· Thanks.

- Finding a job in academia or industry.
- Email: Meng.Fang@student.uts.edu.au