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•  Fast Algorithm Using Augmented Lagrangian Method (ALM) 
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Problem (Image Denoising) 
•  The presence of noise in images is unavoidable. 

•  Problem: How to get clean images? 
–  Ideally, clean images should contain the most meaningful signals of given 

images and also include no noise. 
–  Object boundaries are the most important signals depicted by images. 
–  Object corners, part of object boundaries, are also important signals.  
 

•  Goal: Try to construct a model that is able to remove noise while keeping object 
boundaries, corners and image contrasts. 
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Typical Methods of Image Denoising 

•  Variational method, PDE-based method, statistical method and 
many other ones 

•  Variational method 
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nu +=f

Given image Desired clean image Noise 
1RΩ:f →

How to decompose the given noisy image using appropriate regularizers? 



Classical Variational Models 
•  Mumford-Shah (89) 

•  Rudin-Osher-Fatemi (92) 

–  Powerful & popular,  excellent analytical properties 
–  Preserve edges and sweep noise efficiently 
–  Cannot preserve corner & image contrast 
–  Suffers from the staircase effect 
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•  Ambrosio-Masnou-Morel’s Euler’s Elastica (03) 

–  Originally proposed for the disocclusion problem 
–  Noise removal efficiently, no staircase effect 
–  Solving a fourth-order differential equation 

•  Lysaker-Lundervold-Tai (LLT)(03) 

–  Excellent noise suppression, no staircase effect 
–  Solving a fourth-order differential equation 
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Related high-order models 
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Our Model 
o  Goal: 

•  sweep noise while keeping object edges 

•  preserve object corners and image contrasts 

•  ameliorate the staircase effect 
 

o  Idea: 
•  edges and corners are important concepts in differential geometry 

•  geometry information of the given image function should be 
incorporated in the denoising process 

•  use the mean curvature of the graph               defined by the image 
function        .  ( The idea of considering image graph is not new. Similar 
idea has been used in other works, such as Sochen et al.(98), Lysaker 
et al.(03) ) 
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Mean curvature of image surface 

•  Give an image : 

•  Consider the function :  

    
 Its zero level set corresponds to the image surface             , whose 
mean curvature reads:                 
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•  Energy: 

•  Gradient Descent Equation: 

•  If                                                       , the bi-harmonic equation, explaining why 
small oscillation part can be removed effectively.  
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Our Model (Zhu, Chan  SIIMS 2012) 
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Why does our model preserve contrast? 

 •  What is the value of the regularizer              for              , a multiplier 
of the characteristic function of a set     ? 

Ø  When                     ,                           .                           
•  choose an appropriate sequence of functions        that approximate 
•  calculate                 , and define its limit as                .   
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Ø  Using the same procedure,  we can show that: 

 If       is an open set with        boundary, then                               , the perimeter of 
set       inside the domain      .  

Ø  These results suggest that the proposed model is able to preserve image 
contrasts, as the regularizer doesn’t rely on the height of signal. 

 

•  Theorem (contrast preservation): 
 

Let                     be an image defined on                                      . Define 
                                                                                                                       , then 
there exists a constant            , such that if           , then the following holds: 
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Cont’d 
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•  Consider the function             with                    defined on 

•  Theorem (corner preservation) 
Let                         be an image defined on                               . Define 
                                                                                                                       , then 
there  exists a constant          , such that if            , then the following holds 
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Why does our model preserve corners? 
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•  Multigrid Algorithm by C. Brito-Loeza and K. Chen, 2010 

•  Augmented Lagrangian method by W. Zhu, X.C. Tai, T. Chan, 2011 

•  Augmented Lagrangian method by M. Myllykoski, R. Glowinski, T. 
Karkkainen, 2015 

•  A new augmented Lagrangian method by W. Zhu 
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Existing numerical methods for the model 

 



•  Related functionals 

•  ALM has been successfully applied to the minimization of these functionals by X.C. 
Tai et al. (SIIMS 2010 & 2011) 

Ø  convert the original minimization problem to be a constrained optimization one; 
Ø  search for saddle points of the resulting problem by solving several associated 

sub-problems alternatingly and repeatedly 

•  Key of ALM: whether the sub-problems can be solved efficiently 
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Augmented Lagrangian Method (ALM) 
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•  non-differentiable 
•  nonlinear 
 

•  high order 
•  non-differentiable 
•  nonlinear 
 



•  The functional of the mean curvature denoising model: 

•  Consider an equivalent constrained optimization problem 

•  How to handle the following constraint? 
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ALM for the Mean Curvature Denoising (Zhu,Tai,Chan IPI 2013) 
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•  Instead, introduce the following new variables 

•  Obtain a new constrained optimization problem 

•  The way to treat the last constraint (the idea borrowed from Tai et al. SIIMS 2011) 

•  Consider a modified constrained problem  
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•  The associated augmented Lagrangian functional 

•  The sub-problems 
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Details of the proposed ALM 
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•  Minimizers of                               have closed-form solutions 

•  Euler-Lagrange equations for 
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All the sub-problems can be solved efficiently and accurately. 
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Experiments (1D) 

Original curve 

Result by our  
Model ( u ) 

Difference 
( f-u ) 

Result by ROF 
Model ( u ) 

Difference 
( f-u ) 

Noisy curve 
( f ) 

Jumps preserved 
better 

Removed noise more 
uniform 

Staircase alleviated 
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Experiments (1D) 

Original curve 

Result by our  
Model ( u ) 

Difference 
( f-u ) 

Difference 
( f-u ) 

Noisy curve 
( f ) 

Result by ROF 
Model ( u ) 

Staircase alleviated 
Removed noise more 
uniform 
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Experiments (2D) 

Original “Bars” 

Result by our  
Model ( u ) 

Difference 
( f-u ) 

Difference 
( f-u ) 

Noisy “Bars” 
( f ) 

Result by ROF 
Model ( u ) 

Contrast preserved 
better 
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Experiments (2D) 

Original “Shapes” 

Result by our  
Model ( u ) 

Difference 
( f-u ) 

Difference 
( f-u ) 

Noisy “Shapes” 
( f ) 

Result by ROF 
Model ( u ) 

As indicated in f-u, 
Contrast and corners 
Preserved better 
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Experiments (2D) 

Original “Barbara” 

Result by our  
Model ( u ) 

Difference 
( f-u ) 

Difference 
( f-u ) 

Noisy “Barbara” 
( f ) 

Result by ROF 
Model ( u ) 

Large scale signal,  
such as face  
preserved better 
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Experiments (2D) 

Original “Barbara” Local patch 

By our model By ROF model Staircase effect alleviated 
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Experiments (2D) 

Difference 
( f-u ) 

Difference 
( f-u ) 

Noisy “Peppers” 
( f ) 

Original “Peppers” 

Result by our  
Model ( u ) 

Result by ROF 
Model ( u ) 

Large scale signal,  
such as surface of  
pepper, preserved  
better 
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Experiments (2D) 

Original “Peppers” Local patch 

By our model By ROF model Staircase effect alleviated 
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Comparison with other high-order models 

noise-free image 

noisy image 

By Euler’s elastica model By the LLT model By our model 
A slice of the noise-free (B),  
noisy (R), and cleaned  
image (G) Contrast and corners preserved better than other models 
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Data-Driven Selection Property 

Original image 

clean image 

f

u
3100.3 ×=λ

clean image u
4105.2 ×=λ

clean image u
4100.4 ×=λ

TV-L1 shares a similar property, but cannot preserve corners of objects 

When the regularization parameter 
increases, objects of small scales 
will be removed first and then the  
ones of relatively larger scales. 



•  Goal: reduce the number of Lagrange multipliers 
Ø  Ease the effort of choosing penalty parameters 
Ø  With fewer Lagrange multipliers, the connections among variables become more tight so 

that curvature can be more faithfully captured 
 

•  Consider the following constrained problem 

•  and the following augmented Lagrangian functional  
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New ALM for the MC denoising (Z.,16) 
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•  Sub-problems 

•  Solving the sub-problems 
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Closed-form solution 

Can be solved using FFT 

Compared with the previous ALM, this equation is much more complex; 
We can use FFT to solve it by fixing the nonlinear terms  



Quantities monitoring the convergence of iteration 

•  Residuals: 

•  Relative errors of Lagrange multipliers: 

•  Relative error of      : 
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•  Consider an example 
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Preservation of contrasts and corners 
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•  The difference function “u-f” 
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Preservation of contrasts and corners 

32=N 128=N64=N

Image contrast and four corners can be well preserved 



•  Sub-problems 

•  a 
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Convergence 

The relative errors around 1e-16, the machine precision of Matlab, indicating 
some minimizer is approached. 
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Suffering from staircase? 

f u

fu −
The model is free from  
the staircase effect  

)32,1(*160 membranef =
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data selection 

f )10( =λu
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The role of spatial size h 

f )1,100( == hu λ

)25.0,100( == hu λ )2.0,100( == hu λ

“h” adjusts the competition 
Of the regularization and the  
fitting terms  
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Real Image 

h=10 

f u
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How about L^{p}-mean curvature denoising? 

This comparison suggests that using        -norm  of mean curvature 
with                as a regularizer is also be a good choice. 

f )( 1 MCLbyu − )( 2 MCLbyu −

pL
]2,1[∈p



Summary and future work 

•  Summary of the proposed model 

Ø  sweep noise while keeping edges 

Ø  preserve image contrast and corners 

Ø  free of staircase effect 

Ø  nonconvex 

•  Future work 

Ø  Explore the features of      -norm of mean curvature based regularizers for 
                  and apply them for other imaging problems  

Ø  Construct more efficient numerical method for solving the u-subproblem of the 
new ALM 
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Thank you for your attention!!! 
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