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Increasing complexity of semiconductor technology
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Challenges for TEM analysis

= Interface sharpness
= Ge diffusion

= Composition

= Layer continuity

= Shape and size

= Strain evolution

= 3D device

nMetal

6 COVENTOR
= Nanowire dimensions < typical TEM specimen thickness
= Many materials in nm layer thickness
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In the electron microscope
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From the 2D images to the 3D object
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Fast tomography

Normal
Tomo

Fast
Tomo
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49 images
1 hour

700 images
5 minutes

W. Albrecht and S. Bals, J. Phys. Chem. C 2020, 124, 50, 2727627286 (2020)
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Atomic tomography

s 2 Goris, B. et al., Nano Lett. 15, 10, 6996 (2015)
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Chiral structure and facets

HAADF-STEM High resolution View along
projections 3D reconstruction [100] and [110]

Scale bars are 10 nm
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SEEBIC principles

SEEBIC

= signal arises from holes
induced by the emission
of SEs from the electron-
transparent sample

= detected signal is equal
but opposite to the
generated SE current
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SEEBIC for visualization of NP morphology

HAADF-STEM

50 nm
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ET (1h)

MRSl = SEEBIC enables to gain
information about surface
morphology from a single
iImage in several minutes,
whereas ET may take up to
1 hour of acquisition time
for tilt series and requires
additional processing

E. Vlasov, et al., ACS Mater. Lett., 5 (2023)
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SEEBIC for visualization of NP morphology

1000 ps
2.30%105 e/A?

125 ps
2.88x10* e/A?

1.15%10° e/A? 5.75%x10% e/A2

>100x faster

2% more dose
efficient

©

1.15%10* e/A?

2.30%10* e/A2

200pA @ 60kV 500pA @ 200kV

4.5 min — 0.5 min
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SEEBIC vs SEM
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E. Vlasov, A. Skorikov, A. Sanchez-Iglesias, L. M. Liz-Marzan, J. Verbeeck, S. Bals, ACS Mater. Lett., 5 (2023)

» SEEBIC has superior spatial resolution compared to SEM (1.3 nm vs 4.2 nm)
= SEEBIC resolution is limited by the selected sampling and can be pushed to the obtainable probe size (~100 pm)
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4D STEM
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Unraveling stacking in MoS2 bilayer
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Twist angle measurement in WS2
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Twist angle measurement in WS2
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TEM has limited field of view (a couple of um?2)-> Statistics at microscale can be rather low
*Complicated operation mode->Skilled operator with much experience
Limited space for sample>Heating/Gas/Bias experiments in dedicated holders

*Low interaction due too high velocity electrons (for very thin materials)
- SEM

Disadvantage of SEM:

Lower spatial resolution (still better than optical )

Thickness due too lower acceleration voltage

More damage at lower acceleration voltage??? —>|deal for 2D materials
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Setup
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In the SEM large field of view
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Orientation mapping in large field of view 0.168 mm2
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HAADF STEM analysis of ZrCu 020 (He, P = 10 Pa)

Nanostructured layered structure
< A (Cu-rich)
=B (zr,,Cu0,)
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Acta Materialia 213 (2021) 116955

Contents lists available at ScienceDirect
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5.6 perspectives for simultaneous control of structural and
L physical properties via a small electrical current
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Temperature induced phase transition

@ = ome | |

11.4 11.6 11.8 12.0 12.2 124 5.1 5.2 5.3 5.4 5.5 5.6
¢ lattice [A] a lattice [A]

N. Gauquelin, F.Forte et al., Nano Letters (2023) https://doi.org/10.1021/acs.nanolett.3c00574
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Experiment: Temperature experiment

Temperature: 30°C

500 nm

Temperature: 30°C
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N. Gauquelin, F.Forte et al., Nano Letters (2023) https://doi.org/10.1021/acs.nanolett.3c00574
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Experiment: Temperature experiment
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Biasing experiment 123 | !
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After electric field quench different orientations

= After quenching electric
field, different patterns
arise when changing
crystal orientation

with respect to electric
field
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Evolution lattice parameters

= 4D STEM when applying voltage and quenching after
1. row: By applying voltage domains can be modified
2. row: Quench after brings back to stripe
phase
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Increasing complexity of semiconductor technology

Potential roadmap extension
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Challenges in metrology of GAA-FET
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pMOS GAA Si NW-FET sample

(a) (b)

2D SSRM - 3D Scalpel
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Fig. 5. 3D resistance map obtained by scalpel SSRM technique stacking Fig. 6. (left) TEM cross-section along the NWs of the nMOS GAA S1 NW-
SSRM 2D images for the pMOS GAA Si NW-FET. Highly conductive FET. (right) Scalpel SSRM 2D spreading resistance map at low contact
volumes are set in red, non-conductive in blue. Local interconnect, £ £ - - " f?’u . £ . the NW
source and drain, as well as nanowires surrounded by the metal gates can orce for the same device showing the diffusion of dopants into the NWs.
be identified. Carrier distribution into NW's can be analyzed. Metals are set in red, highly conductive S1 1s 1n light green.

3D-carrier Profiling and Parasitic Resistance Analysis in Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors -
Conference: 2019 IEEE International Electron Devices Meeting (IEDM)
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Preparation of the needle
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Preparation of the needle
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Final prepared needle
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HAADF-tomography of the dummy gate
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EELS+EDX - 60 Gb

EELS-EDX Tomography
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EELS-EDX Tomography
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Map of a specific diffraction spot to identify the crystal phase on the sample

4ADSTEM projection
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Study the crystal phase on individual diffraction patterns

ron Microscopy

for Materiaelg Science Cu <100>



Map of a specific diffraction spot to identify the crystal phase on the sample

~a .

Sum of diffraction patterns
datasets

Study the cristal phase on individual diffraction patterns

ron Microscopy

ec
for Materials Science

Si<110>



Possibilities
in 4DSTEM
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Outlook

e Tomography
ebecame more accessible through fast tomo (faster) and developments in
algorithms
e Alternative SEEBIC available for shape determination
e Multimodal
«4DSTEM
«Possible to determine stacking, defects, orientation of 2D materials
ePossible to do in SEM
«Can get information on crystalline and amorphous materials
e Tomography of complex semiconductor
«Combination of different techniques possible and necessary
«Sample preparation is the most critical step
eNecessity to have 3D information
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