Getting to Know the Unknown Unknowns

Sanjar Karaev, Pauli Miettinen, Jilles Vreeken

Vancouver, May 1, 2015

Do We Know What We Don't Know?

- There are known knowns
 - there are things we know we know
- There are known unknowns
 - we know there are some things we do not know
- But there are also unknown unknowns
 - the ones we don't know we don't know

Do We Know What We Don't Know?

It is the latter category that tends to be the difficult ones.

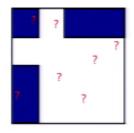
- There are known knowns
 - there are things we know we know
- There are known unknowns
 - we know there are some things we do not know
- But there are also unknown unknowns
 - the ones we don't know we don't know

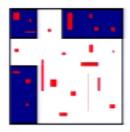
Where Is Data Mining?

- Known knowns
 - noise-free data

missing values

- Unknown unknowns
 - values (possibly) flipped due to noise





Unknown Unknowns: a Closer Look

- False positives $(0 \to 1)$ and false negatives $(1 \to 0)$ are often not equally likely
- E.g. some 0s might be due to a lack of observation

- Example data
 - columns are locations
 - rows are animal species
 - 1 if present, 0 if not

Unknown Unknowns: a Closer Look

- False positives $(0 \to 1)$ and false negatives $(1 \to 0)$ are often not equally likely
- E.g. some 0s might be due to a lack of observation

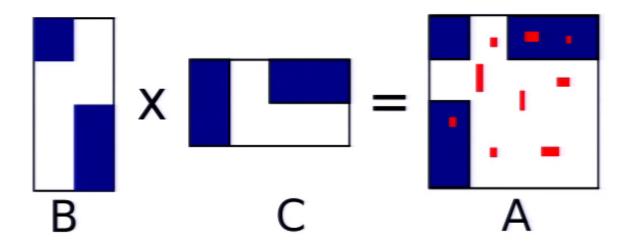
- Example data
 - columns are locations
 - rows are animal species
 - 1 if present, 0 if not

In This Talk

- Represent the data as a union of noisy patterns
- Nassau: a new algorithm for BMF
 - minimizes the description length
 - uses MDL to find the rank (number of patterns)
 - dynamically corrects its previous mistakes when new information is found

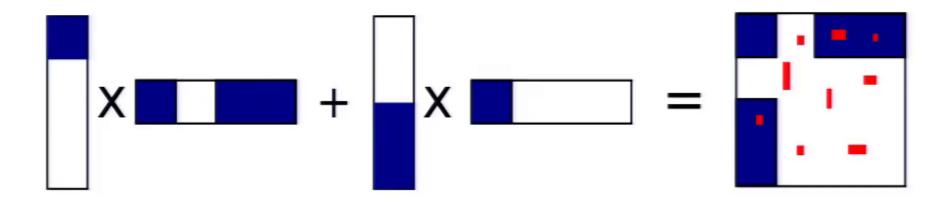
Summarizing Noisy Patterns Using BMF

- Binary data with noise
- ullet Decompose A into a Boolean product of low rank factors + noise



Summarizing Noisy Patterns Using BMF

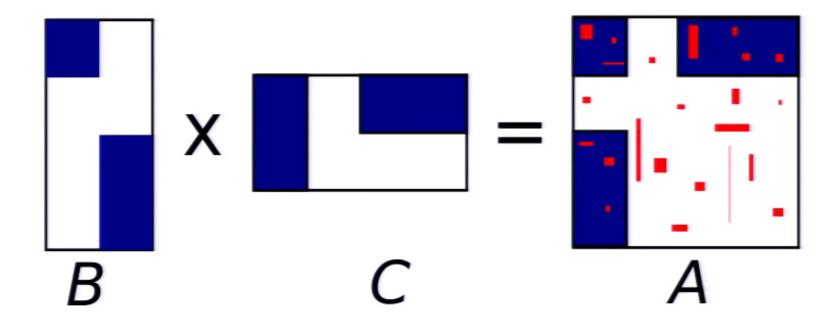
- Binary data with noise
- Decompose A into a Boolean product of low rank factors + noise



A can now be seen as a sum of rank-1 matrices (blocks)

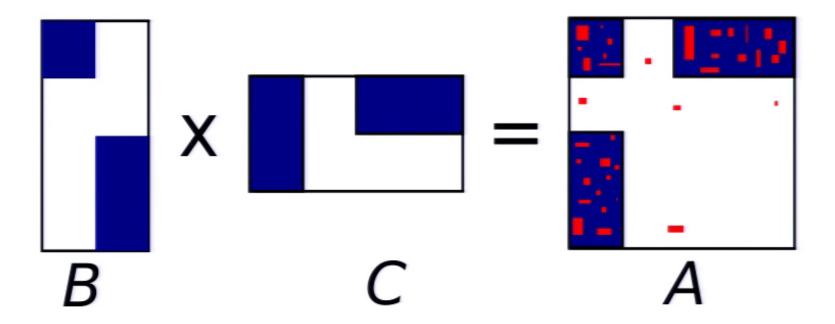
Different Kinds of Noise

- In ideal world
 - use 0/1 error as the cost
 - treat additive $(0 \rightarrow 1)$ and destructive $(1 \rightarrow 0)$ noise equally



Different Kinds of Noise

- In ideal world
 - use 0/1 error as the cost
 - treat additive $(0 \to 1)$ and destructive $(1 \to 0)$ noise equally
- In real world
 - additive and destructive noise are likely to be imbalanced
 - need to find the right ratio

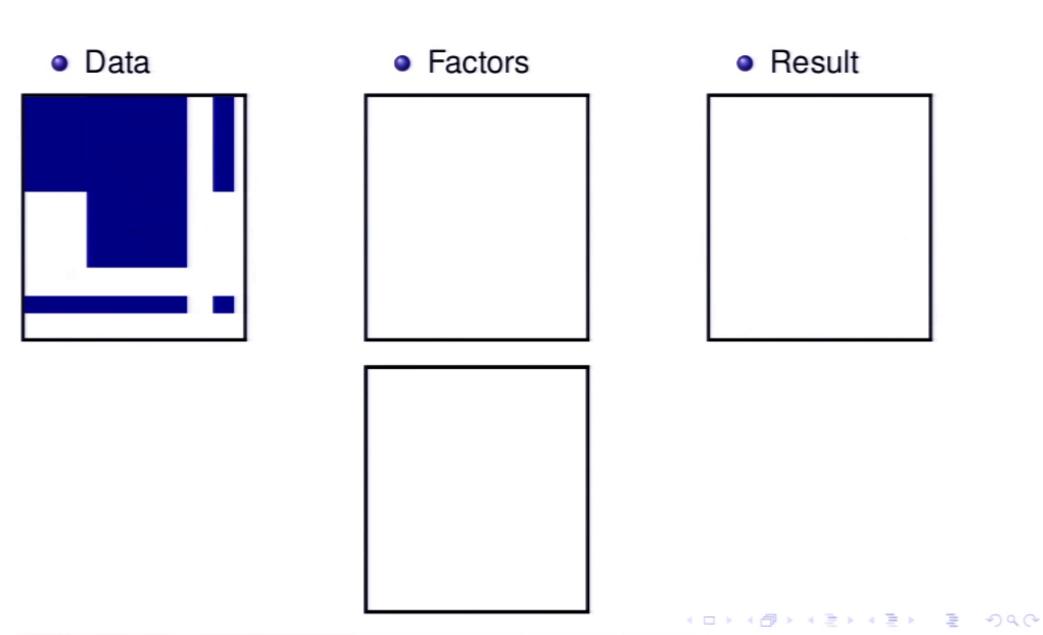


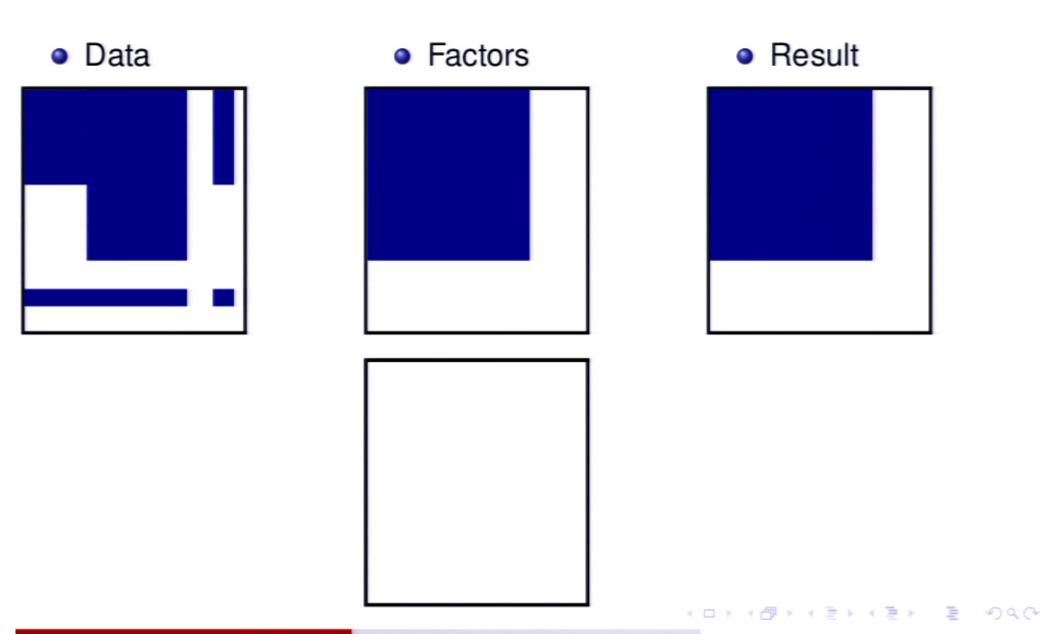
BMF with MDL

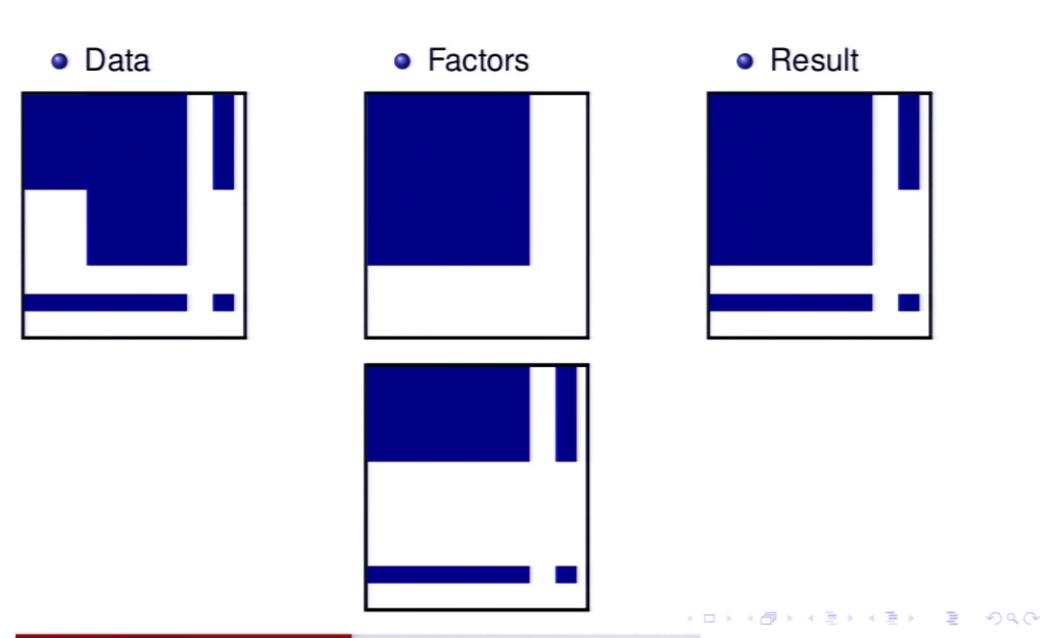
- Objectives
 - isolate flipped elements (unknown unknowns)
 - find optimal rank for the data
- Minimum description length (MDL)
 - patterns in the data can be used to compress it
 - the more we compressed the data, the more we learned about it
- Encoding BMF
 - $A = B \circ C + E$, where E is the error matrix
 - ▶ total description length L(A, B, C) = L(B) + L(C) + L(E)

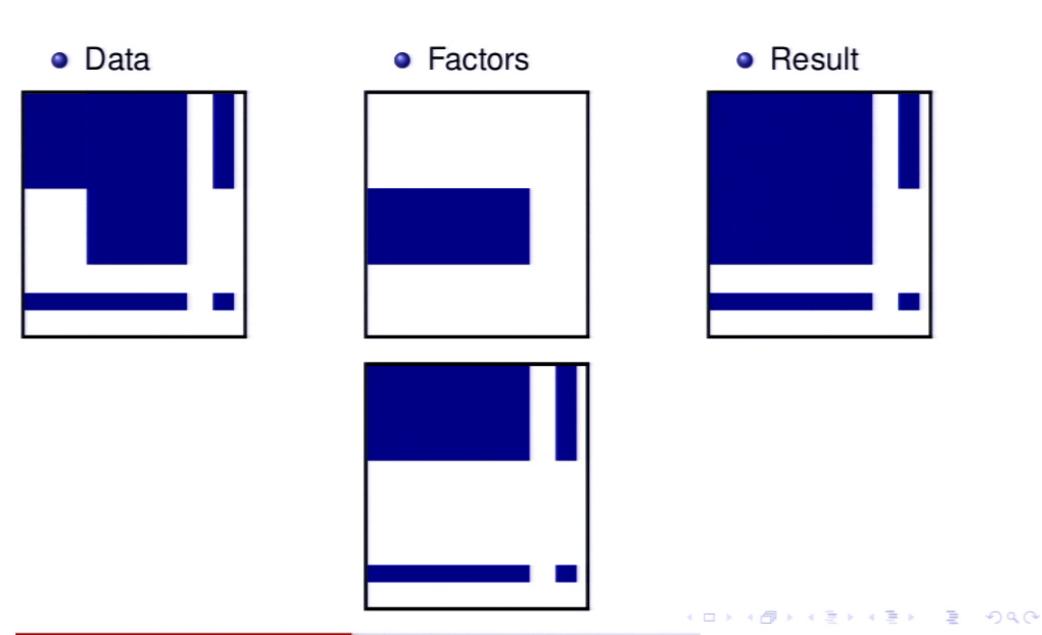
Algorithm

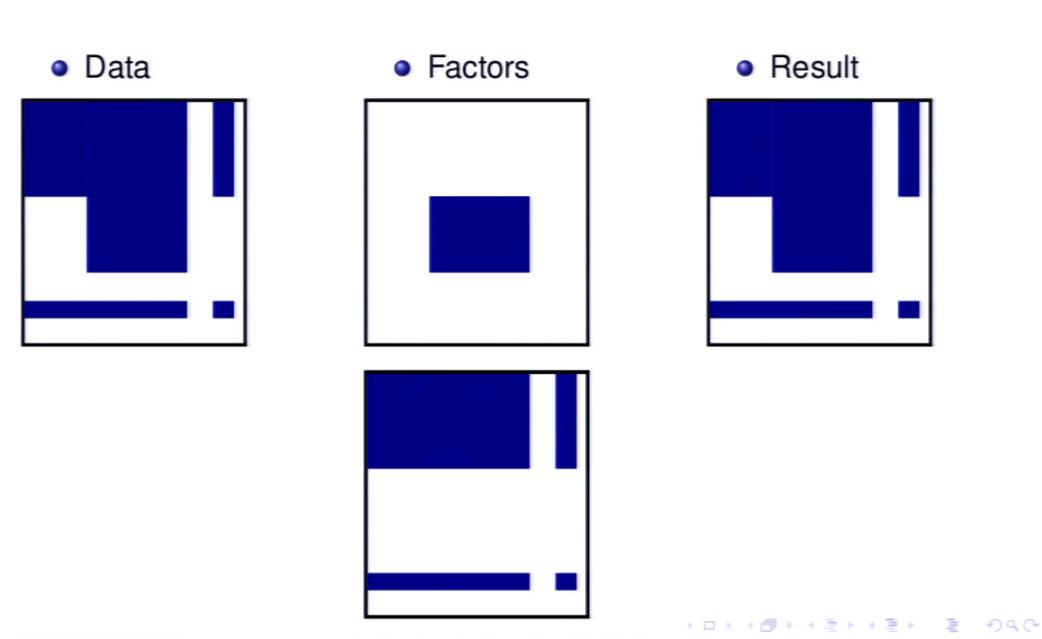
- Nassau: a new BMF algorithm
- directly optimizes the description length
 - helps to deal with the imbalance between different types of noise
- nonhierarchical
 - rank-k decomposition doesn't have to be a part of rank-(k + 1) decomposition
 - helps to fix earlier mistakes







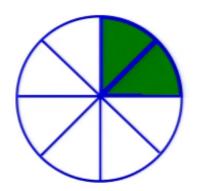




Algorithm: Summary

Nassau

- optimize the description length
- add new block while the cost improves
- update previous blocks in a cyclic fashion

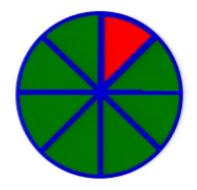


- Stage 1: adding new blocks
- Stage 2: Cyclic updates

Algorithm: Summary

Nassau

- optimize the description length
- add new block while the cost improves
- update previous blocks in a cyclic fashion



- Stage 1: adding new blocks
- Stage 2: Cyclic updates

Results

- Compression ratio in % of the original description length
 - smaller numbers mean better compression

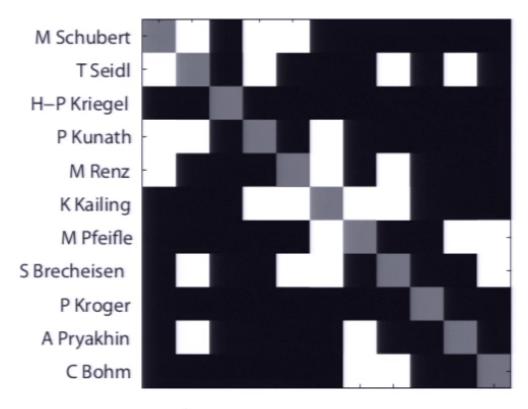
Dataset	Nassau		Panda+ 1		Asso ²	
	L%	k	L%	k	L%	k
4News	93.1	12	92.7	5	93.6	17
DBLP co-auth.	94.1	60	95.9	11	95.8	178
Dialect	42.0	30	57.3	17	48.8	37
DNA Amp.	43.6	100	63.4	20	49.8	58
Mammals	54.5	29	66.8	8	64.6	17
Mushroom	72.6	4	63.6	15	50.6	59
Paleo	89.7	15	91.2	3	91.4	19

¹C. Lucchese, S. Orlando, and R. Perego. A unifying framework for mining approximate top-k binary patterns. 2014

²P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The discrete basis problem. 2008

DBLP

- Example submatrices of DBLP-coauth selected by Nassau
- size 2345-by-2345, 60 factors



M Shubert Seidl edel nath Rent in Preine sen oger win Bohn

European Mammals

- Distribution of European mammals across different locations
- Pictured are the first four factors obtained by algorithms
- size 2670-by-194, 29 factors found

