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Amphiphilic morphology

Amphiphiles ‘
» Molecules having both
a hydrophobic and
. hydrophilic
$2 components.
<2 e Abundant in biological
24 structures; Wide
applications.
Morphology ]
Rich self-assembly structures: bilay-
ers (co-dim 1), pores (co-dim 2), mi-
celles (co-dim 3), pearled structures, Y-
junctions, etc.

Morphological diagram for PB-PEQ in water{Bates et &/, '03]
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Pearling: Transition from low codim to high codim

-

-

200 nm
——
Primitive membranes[Szostak et al, '11] Diblock copolymer{Hayward et al. '08] Diblock copolymer{Bais ot al, '04]
PS core
Ry=11.9 nm PAA shell  (©)

" T
sl Ry= 8.6 nm B
—

-
L ———
i+

MICHIGAN STATE
UNIVERSITY

Copolymers[Bendejacqg et al, '05)




FCH: Cahn-Hilliard expansion

For amphiphilic mixtures: added higher derivatives to the classical
Cahn-Hilliard energy [leubner, Strey, '87; Gompper, Schick, '90]

Cahn-Hilliard 30
/—’—\
F(u f u) + 2A(U)|Vul® + £2B(u)Au + C( ) (€2 Au)? dx.

For the primitive A of A, replace A(u)Vu with VA(u) and integrate by
parts

/ f(u _ A(u))2Au + C(u)(2AuY? dx,
Complete the square
W’ (u) P P(u)
2 = | f = |
= A—B|[\2 (A — B)?
= | C(u)(fAu—|—=|) +|f(u) - dx.
/Q (u)( sc|) +|f@ )
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FCH: stabilization of equilibria of Cahn-Hilliard energy

Consider the functionalized Cahn-Hilliard energy in a domain Q € R?

1
Forn= | 5| (2Au—W'(u)" |- P (5me?|Vul + neW(u))dx,

» The square term stabilizes all the equilibria
of CH energy, including the saddle points.

Unstable equilibrium in CH
4

Potential stable equilibrium in FCH

¢
[Morgan, Riemannian Geometry, '98]

o W-a tilted double-well potential.

Equal depth(s = 0): Single layers (heteroclinics)

J
Tilted(s > 0): Bilayers (homoclinics)
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FCH: slection of equilibria of Cahn-Hilliard energy

Consider the functionalized Cahn-Hilliard energy in a domain Q € R?

Fecu =/Ql(52Au— W’(u))2

2
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Morphological diagram for PB-PEOQ in water{Bates et al, '03]

| &1
— &P (§n152|VU|2 +meW(u)) dx, (1)

The small functionalized term se-
lects stable equilibria out of the ad-
missible set of “CH equilibria” who
maximize the P term.

» The interface term Jn1c%|Vul?:
n1 + Amphiphilicity <+ Wpeo
o The volume term n W(u):

—12 «» Length of tail < Npg
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FCH: distinguished limits of the functionalized terms

Consider the functionalized Cahn-Hilliard energy in a domain Q € R?

Willmore:©O(=?) functionalization: O (=)

N

< g e N

Fon = / %(ezAU— W' (u))® [P (%mszIVUIQJrnzW(U)) dx,
Q

p = 1 : strong functionalization; p = 2 : weak functionalization.

Local whisker coordinates at interface I':
» r—e-scaled signed distance
» s—the tangential variable
» Hp(s)-mean curvature of the interface I at s
e2A = 82 + eHo(8)0r + 2As + O(2).
homoclinic: 0 willmore term

~ PRS- S
2Au— W'(u) = 82u — W' (u) +cHy(8)0,u + O(£2).
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Pearling: bifurcation of bilayers along interfaces

We look for pearled solutions to the stationary strong (p = 1) FCH

0FcH
ou

= (A — W"'(u)+em)(Au— W' (u)) +engW'(u) =ev. (2)

o Variation: Minimizers of FCH with
mass conservation.

» =y—the Lagrange multiplier of the
mass conservation.

» y—the background state in the

sense that

7 2

lim up(r; e + O(£9).

r—+too b( ) W"(O) T ( )
s Bllayers up(r ,H)—symmetrlc pulses in r. [Doelman, Hayrapetyan,

omislow, Wetton, '14]
E Pearled patterns up(r S; )—smaII periodic modulations of bilayer
width in s. [W., Promislow, "14] MICHIGAN STATE

UNIVERSITY




FCH: spectral analysis

In the local coordinates, the stationary strong FCH becomes

(7 — W(u) + 202 + emy) (| 9Pu — W'(u) | + 20Ru) + eng W' (u) = e,

* Up the homoclinic orbit to u, — W'(u) = 0. (3)
o Lo := 8% — W”(up) admits a positive eigenvalue \o. (S-L)
Linearizing (3) at the bilayer w, = up(r) + O(e):
i f;f(ub) =| (Lo +£°85)* |+ O(e).
A Pearling
! ko ,"""‘(-)\ V/\ Meander
Al 1M ?& O(e)
! n s P =thh- . ax n ;




Main result |-existence of flat pearled solutions

Theorem (W., Promislow, '14; Two free parameters)

Given ny,ng, for sufficiently small € > 0, the stationary strong FCH
admits a family of bilayer solutions up, parameterized by the
background state . For any v € R so that

ap ;= C17y + C2(m1 —12) > 0,

up to translation, the stationary FCH admits a family of flat pearled
solutions u, with period T, parameterized by the amplltude K.

Flat bilayer and pearled flat bilayer Diblock copolymer{Bates ot al '04] Copolymers{Bendejacq et al '05]
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Main result |-existence of flat pearled solutions

The family of flat pearled solutions admits the following expansions:

U, = Up(r;7) +|2- il cos (z—ws) Uo(r) + h.o.t.,

v/ Ty
2 (4)
I, = %(1 — Vage) + O (52 4|2V~ ) ;
Uy = rim'ub(r; ).

where the error is in the L>°(R?)-norm and Lo = Aoo.
» Tuning of the period Tp: Fixed in O(¢); v in O(£%/2); || in O(£2).
» Supercritical characteristics:

: |kl
Veoko < Cag = |im =¥ ; |
s O an Yag




Main result |-existence of flat pearled solutions

Theorem (W., Promislow, '14; Two free parameters)

Given ny,ng, for sufficiently small = > 0, the stationary strong FCH
admits a family of bilayer solutions up, parameterized by the
background state . For any v € R so that

ap := C1y + C2(m —n2) > 0,

up to translation, the stationary FCH admits a family of flat pearled
solutions uy, with period T,,, parameterized by the amplitude |x|.

Flat bilayer and pearled flat bilayer Diblock copolymer{Bates ot al '04] Copolymers{Bendejacq et al '05]
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Main result |-existence of flat pearled solutions

The family of flat pearled solutions admits the following expansions:

U, = Up(r;7) +|2- ald cos (2—7rs) Yo(r) + h.o.t.,

Ty

2 (4)
Ty = 221 - vaw) + 0 (2 +[ 2V ).
.. =rim up(r; 7).

where the error is in the L>°(R?)-norm and Lo = Ao%o.
» Tuning of the period Tp: Fixed in O(¢); v in O(£%/2); || in O(£2).
» Supercritical characteristics:

. \/€lR]|
Veoko < Cag = |im =)
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Main result [l-existence of circular pearled solutions

Theorem (Q., Promislow, '14)

Givenni,ng € R, Ry € R™, for sufficiently small = > 0, there exists a

unique (=) € R such that the stationary strong FCH admits a bilayer
solution. Meanwhile, if

ag := €1y + C2(m —m2) > 0,

the stationary strong FCH, up to translation, admits a discrete family
of circular pearled solutions u, parameterized by the amplitude
{Kj}jer with the period
_ 2me 5 o 2m "
TP—RO\//\—O(1 Vaoe) + O (e° +¢ \/E)é{n |lneZ™}. (5)




Main result [l-existence of circular pearled solutions

Every admissible radius,

Ron(k) =

depends only weakly upon the internal parameter «, with variation of
the order O(=?) while the gap between consecutive radii is of order
O(e).

AT, N — R0,n+1
&

e=====1 —Ron1
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|dea of the proof

The proof can be summarized into the following steps:
» Rewrite the PDE (3),

(8,2 — W"(u) L s +sn1)(6,?u— W' (u) +526§u) +ngW'(U) = e,

as an infinite-dimension dynamical system via spatial dynamics,

» Reduce the PDE (3) to an ODE system via center manifold
reduction,

» Obtain the normal form of the reduced ODE system,

» Find transformed pearling solutions in the degenerate 1:1
resonance normal form,

» Show persistence of pearling solutions in the full ODE via an
implicit-function-theorem argument on a Poincaré map.




Spatial dynamics & center manifold reduction

Spatial dynamics: PDE (3) = infinite-dim dynamical system (IDDS)
» View s as the “time” variable; rescaling t = Vi g

£

o With U := (u, us, Lpu + Aous, (Lpu + Nouy):), the rescaled PDE (3)=
U=L()U +F(U,¢), (6)

where L(¢) is the linearized operator the system at u.
Center Manifold Reduction: IDDS (6)= Reduced ODE

» Spectral analysis on L. := L(0) ~ (Lo + Aodx)?. ot
» |IDDS (6) = 8th-order reversible ODE
ddl;c =P.L(e)(Ue + V(Us, €)) + PF(Up + W(Ug,€)), ——x ¥ x>
(7) &

Uc—the center projection P of U,
W—the center manifold map.




Normal form: degenerate 1:1 resonance

Up to cubic terms, the 8th-order ODE (7) admits a 4-dim invariant
space, yielding a degenerate1:1 resonance[looss, Peroueme, "93],

é, = i(1+wie)Cy + C2 +iCy [a7Cy Cs +agl(C1CQ CiC)],
Co= i(1+we)Co +iCp[a7Cy Cy + agi(C1C2 — C1C2)]+ (8)
C1 [—ape + o767y +iaa(Ci1C2 — C1C2)]

which, when agp > 0, admits a family of periodic sols parameterized
by x := e~3/2K.
» Two symmetries = two first integrals(Noether’s theorem)

K= (GG ~TiC2), H=ICol +(~age +2a2K)|Gi[2
e For fixed K and H, ODE (8) = a 2nd order ODE.
(di)2 Afy k(uy) =4 [(—008 + 200K) W% + Huy — K2] ; (9)

Whel'e U1 — |C1 |2.
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Outlook: bilayers in multicomponent FCH systems

ik

From blends of PK-F;E with PS56K-P2VP21K into poarlod P2VP cores|Tlusty , afran, '00]
Motivation
» Cell membrane: favorable properties with ~ 10 types of lipids.
» Block co-polymers: expensive and unnecessary purification.
Multicomponent FCH free energy

Willmore term:O(=)

F(u) = [ |2[D1au - VuW(w) +[P()| P2 gme? Vult+new(u)dx
(10)

» u € R?: 2 species of amphiphiles; D: the diffusive matrix.
» ¢P: the vector filed is not conservative but =-close.

» 2: the Willmore term from the Laplacian is balanced by the

functionalized term. MICHIGAN STATE
UNIVERSITY




Melnikov parameter: persistence of homoclinics

Existence of a limiting homoclinic ¢.: |
the leading order ODE Du,, — V,W(u) = 0 admits
a continuous homoclinic orbit to origin, provided

o« D=1; Wis a billiard limit potential.
» W(0) =0 and 0 a strict local miminum.
» A well-chosen billiard boundary.

Existence of a smooth homoclinic ¢p:
There is a family of smooth potential close to the billiard potential,
each of which admits a smooth homoclinic ¢4, close to ¢..

Persistence of the homoclinic ¢p:

the perturbed ODE

U, + €b(E)Ur

— VuW(u) + =P(u) = O(

=) (11)

admits a smooth homoclinic orbit ¢. for small £ provided that the
Melnikov parameter b(¢) is chosen as

”~

bo

.

b(c) = |“r||L_22||F"'~'r||L1 +0(¢).




Intrinsic curvature: Canham-Helfrich energy

Given the base interface I', a bilayer solution up
can be approximated by

_Joe(r(x)), x €Ty,
Uq(X) = {gbs(oo), x € Q\le.

Q
Under the Laplacian under the whisker coordinates,

2 DAp. — W(o:) +cP(¢:) = e(Ho(S) — bo)dro- + O(&?).

More precisely, the mFCH free energy F(uqg) admits the expansion
Canham-Helfrich energy

A
L i, |

Fu(ug) = 2C /S (Ho(s) — bo)? — (1 + m2)ds |+ O(c*).

Melnikov parameter«straveling speed«sintrinsic curvature
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