Existence of pearled patterns in the planar functionalized Cahn-Hilliard equation

Qiliang Wu
A joint work with Keith Promislow

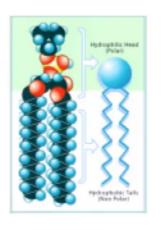
Michigan State University

SIAM DS15, Snowbird, Apr 18, 2015

Outline

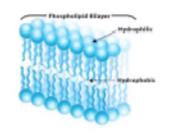
Introduction: pearled patterns and FCH model

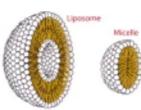
Main result: existence of pearled bilayers in FCH

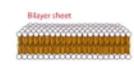

Proof: spatial dynamics & degenerate 1:1 resonance

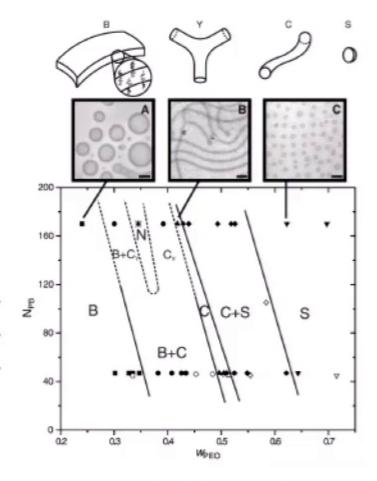
Outlook: multicomponent FCH systems

Amphiphilic morphology

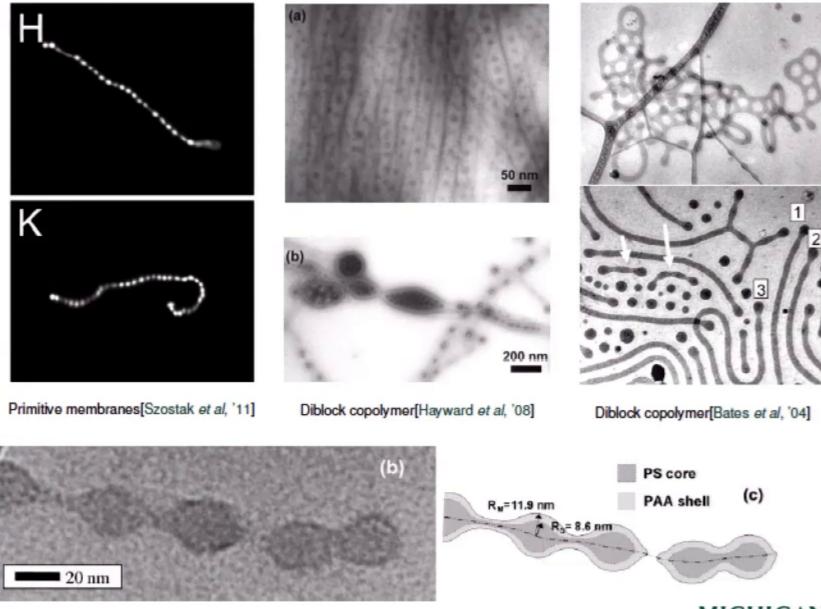

Amphiphiles




- Molecules having both hydrophobic and hydrophilic components.
- Abundant in biological structures; Wide applications.


Morphology

Rich self-assembly structures: bilayers (co-dim 1), pores (co-dim 2), micelles (co-dim 3), pearled structures, Y-junctions, etc.



Morphological diagram for PB-PEO in water[Bates et al, '03]

Pearling: Transition from low codim to high codim

Copolymers[Bendejacq et al, '05]

MICHIGAN STATE

FCH: Cahn-Hilliard expansion

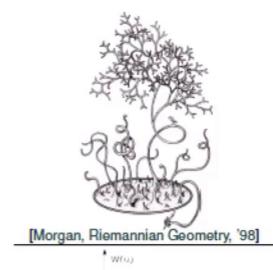
For amphiphilic mixtures: added higher derivatives to the classical Cahn-Hilliard energy [Teubner, Strey, '87; Gompper, Schick, '90]

$$\mathcal{F}(u) := \int_{\Omega} \overbrace{f(u) + \varepsilon^2 A(u) |\nabla u|^2 + \varepsilon^2 B(u) \Delta u}^{\text{Cahn-Hilliard}} + \overbrace{C(u)}^{\geqslant 0} (\varepsilon^2 \Delta u)^2 dx.$$

For the primitive \overline{A} of A, replace $A(u)\nabla u$ with $\nabla \overline{A}(u)$ and integrate by parts

$$\mathcal{F}(u) := \int_{\Omega} f(u) + (B(u) - \overline{A}(u))\varepsilon^2 \Delta u + C(u)(\varepsilon^2 \Delta u)^2 dx,$$

Complete the square


$$\mathcal{F}(u) := \int_{\Omega} \overbrace{C(u)}^{\frac{1}{2}} \left(\varepsilon^2 \Delta u - \boxed{\frac{\overline{A} - B}{2C}} \right)^2 + \boxed{f(u) - \frac{(\overline{A} - B)^2}{C(u)}} dx.$$

FCH: stabilization of equilibria of Cahn-Hilliard energy

Consider the functionalized Cahn-Hilliard energy in a domain $\Omega \in \mathbb{R}^2$

$$\mathcal{F}_{CH} = \int_{\Omega} \frac{1}{2} \left[\left(\varepsilon^2 \Delta u - W'(u) \right)^2 \right] - \varepsilon^{\rho} \left(\frac{1}{2} \eta_1 \varepsilon^2 |\nabla u|^2 + \eta_2 W(u) \right) \mathrm{d}x,$$

A tilted double well

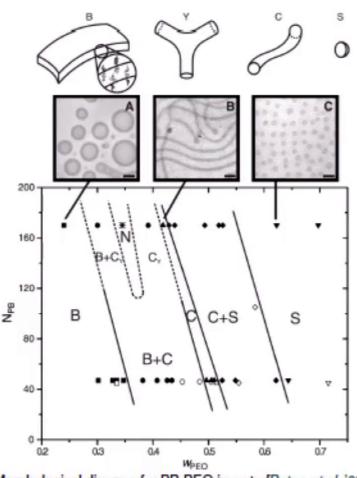
 The square term stabilizes all the equilibria of CH energy, including the saddle points.

Unstable equilibrium in CH

Potential stable equilibrium in FCH

W-a tilted double-well potential.

Equal depth($\delta = 0$): Single layers (heteroclinics)


Tilted(δ > 0): Bilayers (homoclinics)

MICHIGAN STATE

FCH: slection of equilibria of Cahn-Hilliard energy

Consider the functionalized Cahn-Hilliard energy in a domain $\Omega \in \mathbb{R}^2$

$$\mathcal{F}_{CH} = \int_{\Omega} \frac{1}{2} \left(\varepsilon^2 \Delta u - W'(u) \right)^2 - \varepsilon^p \left(\frac{1}{2} \eta_1 \varepsilon^2 |\nabla u|^2 + \eta_2 W(u) \right) \, \mathrm{d}x, \quad (1)$$

Morphological diagram for PB-PEO in water[Bates et al, '03]

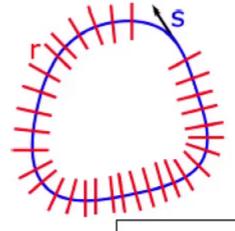
The small functionalized term selects stable equilibria out of the admissible set of "CH equilibria" who maximize the εP term.

• The interface term $\frac{1}{2}\eta_1 \varepsilon^2 |\nabla u|^2$:

$$\eta_1 \leftrightarrow \mathsf{Amphiphilicity} \leftrightarrow W_{PEO}$$

The volume term η₂W(u):

$$-\eta_2 \leftrightarrow \text{Length of tail} \leftrightarrow N_{PB}$$



FCH: distinguished limits of the functionalized terms

Consider the functionalized Cahn-Hilliard energy in a domain $\Omega \in \mathbb{R}^2$

$$\mathcal{F}_{CH} = \int_{\Omega} \underbrace{\frac{1}{2} \big(\varepsilon^2 \Delta u - W'(u) \big)^2}_{\text{Willmore}: \mathcal{O}(\varepsilon^2)} \underbrace{\frac{1}{2} \eta_1 \varepsilon^2 |\nabla u|^2 + \eta_2 W(u) \big)}_{\text{functionalization}: \mathcal{O}(\varepsilon^p)}_{\text{functionalization}: \mathcal{O}(\varepsilon^p)}$$

p = 1: strong functionalization; p = 2: weak functionalization.

Local whisker coordinates at interface Γ:

- $r-\varepsilon$ -scaled signed distance
- s—the tangential variable
- $H_0(s)$ —mean curvature of the interface Γ at s $\varepsilon^2 \Delta = \partial_r^2 + \varepsilon H_0(s) \partial_r + \varepsilon^2 \Delta_s + \mathcal{O}(\varepsilon^2).$

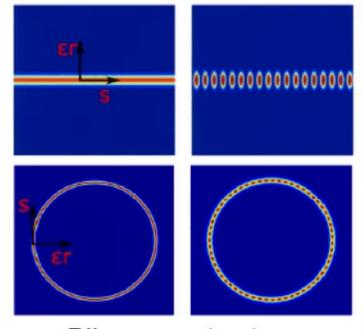
$$\varepsilon^2 \Delta u - W'(u) = \overbrace{\partial_r^2 u - W'(u)}^{\text{homoclinic: 0}} + \underbrace{\varepsilon H_0(s) \partial_r u}^{\text{Willmore term}} + \mathcal{O}(\varepsilon^2).$$

Outline

Introduction: pearled patterns and FCH model

Main result: existence of pearled bilayers in FCH

Proof: spatial dynamics & degenerate 1:1 resonance


Outlook: multicomponent FCH systems

Pearling: bifurcation of bilayers along interfaces

We look for pearled solutions to the stationary strong (p = 1) FCH

$$\frac{\delta \mathcal{F}_{CH}}{\delta u} = (\Delta - W''(u) + \varepsilon \eta_1) (\Delta u - W'(u)) + \varepsilon \eta_d W'(u) = \varepsilon \gamma. \quad (2)$$

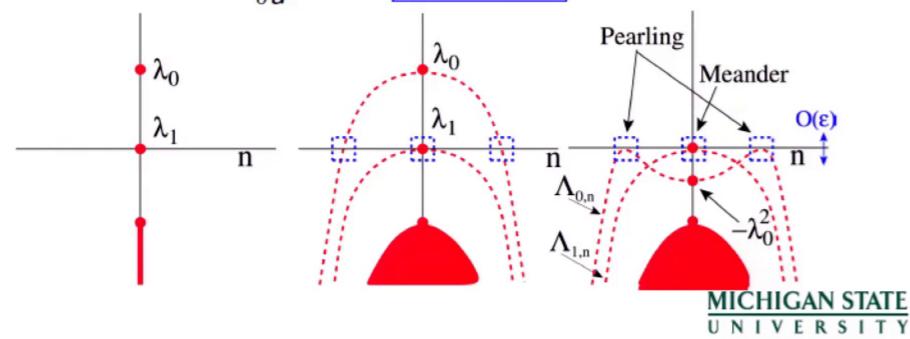
- Variation: Minimizers of FCH with mass conservation.
- εγ-the Lagrange multiplier of the mass conservation.
- η—the background state in the sense that

$$\lim_{r\to\pm\infty}u_b(r;\varepsilon)=\frac{\gamma}{W''(0)}\varepsilon+\mathcal{O}(\varepsilon^2).$$

- Bilayers u_b(r; ε)—symmetric pulses in r. [Doelman, Hayrapetyan, Promislow, Wetton, '14]
- Pearled patterns u_p(r, s; ε)–small periodic modulations of bilayer width in s. [W., Promislow, '14]

 MICHIGAN STATE

FCH: spectral analysis

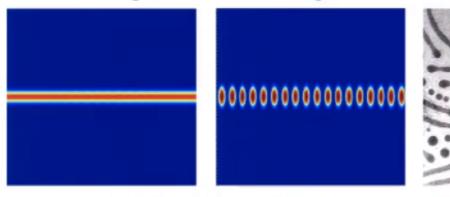

In the local coordinates, the stationary strong FCH becomes

$$(\partial_r^2 - W''(u) + \varepsilon^2 \partial_s^2 + \varepsilon \eta_1) \left(\frac{\partial_r^2 u - W'(u)}{\partial_r^2 u - W'(u)} + \varepsilon^2 \partial_s^2 u \right) + \varepsilon \eta_d W'(u) = \varepsilon \gamma,$$
(3)

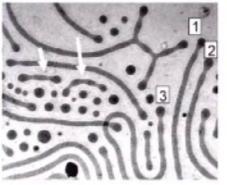
- u₀ the homoclinic orbit to u_{rr} W'(u) = 0.
- $\mathcal{L}_0 := \partial_r^2 W''(u_0)$ admits a positive eigenvalue λ_0 . (S-L)

Linearizing (3) at the bilayer $u_b = u_0(r) + \mathcal{O}(\varepsilon)$:

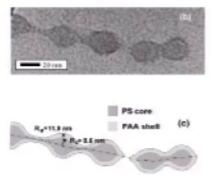
$$\mathbb{L} := \frac{\delta^2 \mathcal{F}}{\delta u^2}(u_b) = \boxed{(\mathcal{L}_0 + \varepsilon^2 \partial_s^2)^2} + \mathcal{O}(\varepsilon).$$



Theorem (W., Promislow, '14; Two free parameters)


Given η_1, η_d , for sufficiently small $\varepsilon > 0$, the stationary strong FCH admits a family of bilayer solutions u_b , parameterized by the background state γ . For any $\gamma \in \mathbb{R}$ so that

$$\alpha_0 := c_1 \gamma + c_2 (\eta_1 - \eta_2) > 0,$$


up to translation, the stationary FCH admits a family of flat pearled solutions u_p with period T_p , parameterized by the amplitude $|\kappa|$.

Flat bilayer and pearled flat bilayer

Copolymers[Bendejacq et al, '05]

The family of flat pearled solutions admits the following expansions:

$$u_{p} = u_{b}(r; \gamma) + \left[2\frac{\sqrt{\varepsilon|\kappa|}}{\sqrt[4]{\alpha_{0}}}\right] \cos\left(\frac{2\pi}{T_{p}}s\right) \psi_{0}(r) + h.o.t.,$$

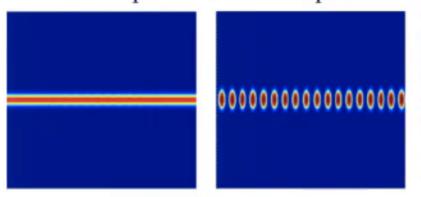
$$T_{p} = \frac{2\pi\varepsilon}{\sqrt{\lambda_{0}}} (1 - \sqrt{\alpha_{0}\varepsilon}) + \mathcal{O}\left(\varepsilon^{2} + \left[\varepsilon^{2}\sqrt{|\kappa|}\right]\right),$$

$$u_{\infty} = \lim_{r \to \infty} u_{b}(r; \gamma).$$
(4)

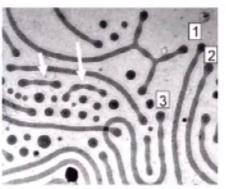
where the error is in the $L^{\infty}(\mathbb{R}^2)$ -norm and $\mathcal{L}_0\psi_0=\lambda_0\psi_0$.

- Tuning of the period T_p : Fixed in $\mathcal{O}(\varepsilon)$; γ in $\mathcal{O}(\varepsilon^{3/2})$; $|\kappa|$ in $\mathcal{O}(\varepsilon^2)$.
- Supercritical characteristics:

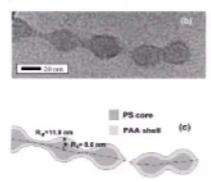
$$\sqrt{\varepsilon_0}\kappa_0 < C\alpha_0 \Rightarrow \lim_{\alpha_0 \to 0} \frac{\sqrt{\varepsilon|\kappa|}}{\sqrt[4]{\alpha_0}} = 0.$$



Theorem (W., Promislow, '14; Two free parameters)


Given η_1, η_d , for sufficiently small $\varepsilon > 0$, the stationary strong FCH admits a family of bilayer solutions u_b , parameterized by the background state γ . For any $\gamma \in \mathbb{R}$ so that

$$\alpha_0 := c_1 \gamma + c_2 (\eta_1 - \eta_2) > 0,$$


up to translation, the stationary FCH admits a family of flat pearled solutions u_p with period T_p , parameterized by the amplitude $|\kappa|$.

Copolymers[Bendejacq et al, '05]

The family of flat pearled solutions admits the following expansions:

$$u_{p} = u_{b}(r; \gamma) + \left[2\frac{\sqrt{\varepsilon|\kappa|}}{\sqrt[4]{\alpha_{0}}}\right] \cos\left(\frac{2\pi}{T_{p}}s\right) \psi_{0}(r) + h.o.t.,$$

$$T_{p} = \frac{2\pi\varepsilon}{\sqrt{\lambda_{0}}} (1 - \sqrt{\alpha_{0}\varepsilon}) + \mathcal{O}\left(\varepsilon^{2} + \left[\frac{\varepsilon^{2}\sqrt{|\kappa|}}{\varepsilon^{2}}\right]\right),$$

$$u_{\infty} = \lim_{r \to \infty} u_{b}(r; \gamma).$$
(4)

where the error is in the $L^{\infty}(\mathbb{R}^2)$ -norm and $\mathcal{L}_0\psi_0=\lambda_0\psi_0$.

- Tuning of the period T_p : Fixed in $\mathcal{O}(\varepsilon)$; γ in $\mathcal{O}(\varepsilon^{3/2})$; $|\kappa|$ in $\mathcal{O}(\varepsilon^2)$.
- Supercritical characteristics:

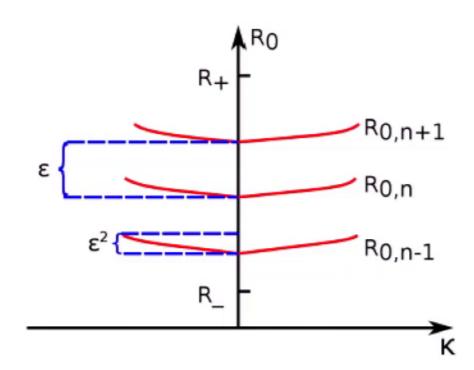
$$\sqrt{\varepsilon_0}\kappa_0 < C\alpha_0 \Rightarrow \lim_{\alpha_0 \to 0} \frac{\sqrt{\varepsilon|\kappa|}}{\sqrt[4]{\alpha_0}} = 0.$$

Theorem (Q., Promislow, '14)

Given $\eta_1, \eta_d \in \mathbb{R}$, $R_0 \in \mathbb{R}^+$, for sufficiently small $\varepsilon > 0$, there exists a unique $\gamma(\varepsilon) \in \mathbb{R}$ such that the stationary strong FCH admits a bilayer solution. Meanwhile, if

$$\alpha_0 := c_1 \gamma + c_2 (\eta_1 - \eta_2) > 0,$$

the stationary strong FCH, up to translation, admits a discrete family of circular pearled solutions u_p parameterized by the amplitude $\{\kappa_i\}_{i\in I}$ with the period


$$T_{\rm p} = \frac{2\pi\varepsilon}{R_0\sqrt{\lambda_0}}(1-\sqrt{\alpha_0\varepsilon}) + \mathcal{O}\left(\varepsilon^2 + \varepsilon^2\sqrt{\kappa}\right) \in \left\{\frac{2\pi}{n} \mid n \in \mathbb{Z}^+\right\}. \tag{5}$$

Every admissible radius,

$$R_{0,n}(\kappa) = \frac{n\varepsilon}{\sqrt{\lambda_0}} (1 - \sqrt{\alpha_0 \varepsilon}) + \mathcal{O}(\varepsilon^2 + \varepsilon^2 \sqrt{|\kappa|}),$$

depends only weakly upon the internal parameter κ , with variation of the order $\mathcal{O}(\varepsilon^2)$ while the gap between consecutive radii is of order $\mathcal{O}(\varepsilon)$.

Outline

Introduction: pearled patterns and FCH model

Main result: existence of pearled bilayers in FCH

Proof: spatial dynamics & degenerate 1:1 resonance

Outlook: multicomponent FCH systems

Idea of the proof

The proof can be summarized into the following steps:

Rewrite the PDE (3),

$$(\partial_r^2 - W''(u) + \varepsilon^2 \partial_s^2 + \varepsilon \eta_1) (\partial_r^2 u - W'(u) + \varepsilon^2 \partial_s^2 u) + \eta_d W'(u) = \varepsilon \gamma,$$

as an infinite-dimension dynamical system via spatial dynamics,

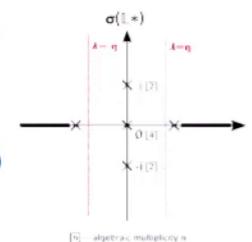
- Reduce the PDE (3) to an ODE system via center manifold reduction,
- Obtain the normal form of the reduced ODE system,
- Find transformed pearling solutions in the degenerate 1:1 resonance normal form,
- Show persistence of pearling solutions in the full ODE via an implicit-function-theorem argument on a Poincaré map.

Spatial dynamics & center manifold reduction

Spatial dynamics: PDE (3) ⇒ infinite-dim dynamical system (IDDS)

- View s as the "time" variable; rescaling $t = \frac{\sqrt{\lambda_0}}{\varepsilon} s$
- With $U := (u, u_t, \mathcal{L}_b u + \lambda_0 u_{tt}, (\mathcal{L}_b u + \lambda_0 u_{tt})_t)$, the rescaled PDE (3) \Rightarrow

$$\dot{U} = \mathbb{L}(\varepsilon)U + \mathbb{F}(U, \varepsilon), \tag{6}$$


where $\mathbb{L}(\varepsilon)$ is the linearized operator the system at u_b .

Center Manifold Reduction: IDDS (6)⇒ Reduced ODE

- Spectral analysis on $\mathbb{L}_{\star} := \mathbb{L}(0) \sim (\mathcal{L}_0 + \lambda_0 \partial_{tt})^2$.
- IDDS (6) ⇒ 8th-order reversible ODE

$$\frac{\mathrm{d}U_c}{\mathrm{d}t} = \mathbb{P}_c \mathbb{L}(\varepsilon) (U_c + \Psi(U_c, \varepsilon)) + \mathbb{P}_c \mathbb{F}(U_c + \Psi(U_c, \varepsilon)), \quad ---\times$$
(7)

 U_c —the center projection \mathbb{P}_c of U, Ψ —the center manifold map.

Normal form: degenerate 1:1 resonance

Up to cubic terms, the 8th-order ODE (7) admits a 4-dim invariant space, yielding a degenerate1:1 resonance[looss, Pérouème, '93],

$$\begin{cases} \dot{C}_{1} = i(1 + \omega_{1}\varepsilon)C_{1} + C_{2} + iC_{1}\left[\alpha_{7}C_{1}\bar{C}_{1} + \alpha_{8}i(C_{1}\bar{C}_{2} - \bar{C}_{1}C_{2})\right], \\ \dot{C}_{2} = i(1 + \omega_{1}\varepsilon)C_{2} + iC_{2}\left[\alpha_{7}C_{1}\bar{C}_{1} + \alpha_{8}i(C_{1}\bar{C}_{2} - \bar{C}_{1}C_{2})\right] + \\ C_{1}\left[-\alpha_{0}\varepsilon + \alpha_{1}C_{1}\bar{C}_{1} + i\alpha_{2}(C_{1}\bar{C}_{2} - \bar{C}_{1}C_{2})\right], \end{cases}$$
(8)

which, when $\alpha_0 > 0$, admits a family of periodic sols parameterized by $\kappa := \varepsilon^{-3/2} K$.

Two symmetries ⇒ two first integrals(Noether's theorem)

$$K = \frac{i}{2}(C_1\overline{C_2} - \overline{C_1}C_2), \quad H = |C_2|^2 + (-\alpha_0\varepsilon + 2\alpha_2K)|C_1|^2.$$

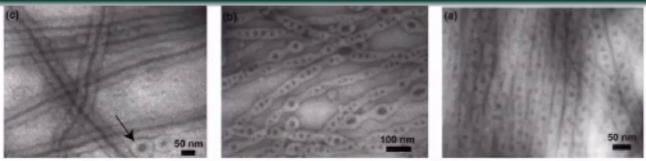
For fixed K and H, ODE (8) ⇒ a 2nd order ODE.

$$\left(\frac{\mathrm{d}u_1}{\mathrm{d}t}\right)^2 = 4f_{H,K}(u_1) := 4\left[\left(-\alpha_0\varepsilon + 2\alpha_2K\right)u_1^2 + Hu_1 - K^2\right],\tag{9}$$

where $u_1 = |C_1|^2$.

Outline

Introduction: pearled patterns and FCH model


Main result: existence of pearled bilayers in FCH

Proof: spatial dynamics & degenerate 1:1 resonance

Outlook: multicomponent FCH systems

Outlook: bilayers in multicomponent FCH systems

From blends of PS9.5K-PEO5K with PS56K-P2VP21K into pearled P2VP cores[Tlusty, Safran, '00]

Motivation

- Cell membrane: favorable properties with \sim 10 types of lipids.
- Block co-polymers: expensive and unnecessary purification.

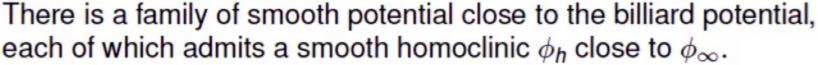
Multicomponent FCH free energy

Willmore term: $\mathcal{O}(\varepsilon)$

$$\mathcal{F}(\mathbf{u}) = \int_{\Omega} |\widehat{\varepsilon^2 \mathbf{D}} \Delta \mathbf{u} - \nabla_{\mathbf{u}} W(\mathbf{u}) + |\widehat{\varepsilon} \mathbf{P}(\mathbf{u})|^2 - |\widehat{\varepsilon}^2| (\frac{1}{2} \eta_1 \varepsilon^2 |\nabla \mathbf{u}|^2 + \eta_2 W(\mathbf{u})) dx$$
(10)

- u ∈ R²: 2 species of amphiphiles; D: the diffusive matrix.
- ε **P**: the vector filed is not conservative but ε -close.
- ε^2 : the Willmore term from the Laplacian is balanced by the functionalized term.

 MICHIGAN STATE

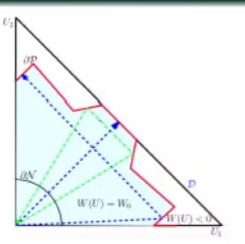

Melnikov parameter: persistence of homoclinics

Existence of a limiting homoclinic ϕ_{∞} :

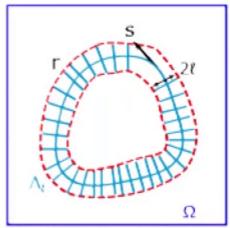
the leading order ODE $\mathbf{D}\mathbf{u}_{rr} - \nabla_{\mathbf{u}}W(u) = 0$ admits a continuous homoclinic orbit to origin, provided

- D = I; W is a billiard limit potential.
- W(0) = 0 and 0 a strict local miminum.
- A well-chosen billiard boundary.

Existence of a smooth homoclinic ϕ_h :


Persistence of the homoclinic ϕ_h :

the perturbed ODE


$$\mathbf{u}_{rr} + \varepsilon b(\varepsilon) \mathbf{u}_{r} - \nabla_{\mathbf{u}} W(\mathbf{u}) + \varepsilon \mathbf{P}(\mathbf{u}) = \mathcal{O}(\varepsilon^{2}).$$
 (11)

admits a smooth homoclinic orbit ϕ_{ε} for small ε provided that the Melnikov parameter $b(\varepsilon)$ is chosen as

$$b(\varepsilon) = \overbrace{\|\mathbf{u}_r\|_{L^2}^{-2} \|\mathbf{P} \cdot \mathbf{u}_r\|_{L^1}}^{b_0} + \mathcal{O}(\varepsilon).$$

Intrinsic curvature: Canham-Helfrich energy

Given the base interface Γ , a bilayer solution \mathbf{u}_b can be approximated by

$$\mathbf{u}_q(x) = \begin{cases} \phi_{\varepsilon}(r(x)), & x \in \Gamma_{\ell}, \\ \phi_{\varepsilon}(\infty), & x \in \Omega \backslash \Gamma_{\ell}. \end{cases}$$

Under the Laplacian under the whisker coordinates,

$$\varepsilon^2 \Delta \phi_{\varepsilon} - W(\phi_{\varepsilon}) + \varepsilon \mathbf{P}(\phi_{\varepsilon}) = \varepsilon (H_0(s) - b_0) \partial_r \phi_{\varepsilon} + \mathcal{O}(\varepsilon^2).$$

More precisely, the mFCH free energy $\mathcal{F}(\mathbf{u}_q)$ admits the expansion Canham-Helfrich energy

$$\mathcal{F}_{M}(\mathbf{u}_{q}) = \varepsilon^{3} C \overbrace{\int_{\mathcal{S}} (H_{0}(s) - b_{0})^{2} - (\eta_{1} + \eta_{2}) \mathrm{d}s} + \mathcal{O}(\varepsilon^{4}).$$

Melnikov parameter↔traveling speed↔intrinsic curvature

