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Compressed Sensing

Compressed Sensing
Compressed Sensing aims at solving

Ax = y where x ∈ CN , y ∈ Cm,A ∈ Cm×N

for m� N under the assumption that x is s-sparse, i.e. ‖x‖0 = ]{i : xi 6= 0} ≤ s.

Basis Pursuit
Algorthmic approach:

min ‖x‖ subject to Ax = y (BP)

Robust approach:

min ‖x‖1 subject to ‖Ax − y‖2 ≤ η (BPDN)

where η is an estimate for the noise level.
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Sparsity and Modifications
Union of subspaces
Basic idea behind sparsity: the signal x belongs to a union of low-dimensional
subspaces:

x ∈ Σs := {x ∈ CN ; ‖x‖0 ≤ s} =
⋃

S⊂[N]
]S≤s

{x ∈ CN ; supp(x) ⊂ S}

Modifications

• Since x may not be sparse in the standard basis, one may employ an orthonormal
operator Θ ∈ O(n), i.e.

min ‖z‖1 subject to AΘ∗z = y

which is the same as

min ‖Θx‖1 subject to Ax = y .

• If x is not sparse, its discrete gradient ∇x often is (e.g. for images), hence we
minimize

min ‖∇x‖1 subject to Ax = y . (TV)
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Compressed Sensing

Restricted Isometry Property
A possesses the Restricted Isometry Property (RIP) of order s if

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all x ∈ Σs and some δ ∈ (0, 1).

The smallest such δ is called the Restricted Isometry Constant δs .

Recovery result
If A has the RIP of order 2s with δ2s ≤ 0.6248 then the minimizer x] of BPDN fulfils

‖x − x]‖2 ≤ C
σs (x)1√

s
+ Dη

where σs (x)1 = infz:‖z‖0≤s ‖z − x‖1 is the error of best s-term approximation.
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Compressed Sensing

Standard/Benchmark Theorem
If m ≥ Cδ−2s ln(eN/s), then a Gaussian random matrix A possesses the RIP of order
s with constant δ with probability exceeding 1− 2 exp(−δ2m/2C).

Further information

For a thorough introduction, see Foucart and Rauhut [2013]:

The big red book
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Analysis and Synthesis

Frames

Let Ω =

 ωt
1
...
ωt

p

 ∈ Cp×N with p ≥ N be a frame for CN , i.e. there exist A,B > 0

such that

A‖x‖2
2 ≤

p∑
i=1

|〈x , ωi 〉|2 ≤ B‖x‖2 for all x ∈ CN .

The sequence {〈x , ωi 〉}p
i=1 are the analysis coefficients of x . A frame is called tight if

A = B and Parseval if A = B = 1.

Since {ω1, . . . , ωN} spans CN we can expand

x =

p∑
i=1

ciωi for some ci ∈ C.

The ci are the synthesis coefficients. They can be computed via a dual frame
Ω† ∈ CN×p , i.e. c = Ω†x . Those are not unique in general.
Remark: The canonical dual frame is Ω† = (Ω∗Ω)−1Ω∗.
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Cosparsity

Frame Minimization
Instead of basis pursuit we consider

min ‖Ωx‖1 subject to Ax = y (Ω-BP)

or its robust version

min ‖Ωx‖1 subject to ‖Ax − y‖2 ≤ η (Ω-BPDN)

under the assumption that x is Ω− k-cosparse, i.e. ]{i ; 〈ωi , x〉 6= 0} ≤ p − k

Union of subspaces
Cosparsity comes from the same idea as sparsity: a p − k-cosparse x belongs to{

x ∈ CN : ‖Ωx‖0 ≤ p − k
}

=
⋃

S⊂[p]
]S≤k

{ωi : i ∈ S}⊥

We often write s = p − k.
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Previous Results

Ω-Restricted Isometry Property (Ω-RIP)
For the analysis, Candes et al. [2011] introduced the Ω-RIP

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all Ω− k − cosparse x

or equivalently

(1− δ)‖Ω†c‖2
2 ≤ ‖AΩ†c‖2

2 ≤ 1 + δ‖Ω†c‖2
2 for all c ∈ Σs .

The smallest δs ∈ (0, 1) fulfilling either of the inequalities is the restricted isometry
constant.

Reconstruction Guarantee
If A has the Ω-RIP with constants δ2s ≤ 0.08, then the minimizer x] of BPDN fulfils

‖x − x]‖2 ≤ C
σs (Ωx)1√

s
+ Dη

where σs (Ωx)1 = infz:‖Ωz‖0≤p−k ‖Ωz − Ωx‖1.
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Previous Results

Ω-RIP for Gaussian Random Matrices
• Candes et al. [2011] showed that if Ω is Parseval and m & s ln(p/s), then a

Gaussian random matrix possesses the Ω-RIP with high probability.

• The same paper argued, that all matrices classically used in Compressed Sensing
(e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Ω-RIP if an additional
random sign flip is applied.

• Rauhut and Kabanava [2013] showed that if m & Bs
A

ln
( ep

s

)
, then a Gaussian

random matrix possesses the Ω-RIP with high probability.

• What about other types of measurement matrices?

”We will see easily that Gaussian matrices and other random compressed sensing
matrices satisfy the Ω-RIP”Candes et al. [2011]
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Interlude: Sampling in Bounded Orthonormal Systems

Bounded Orthonormal Systems (BOS)
Let D a non-empty set endowed with a probability measure ν and Ψ := {ψ1 . . . , ψN}
be a system of pairwise orthonormal functions on D with respect to ν that is∫

D
ψi (t)ψj (t)dν(t) = δi,j

Ψ is an bounded orthonormal system if there exists a constant K ≥ 0 such that

max
i∈[N]

sup
t∈D
|ψi (t)| ≤ K

Examples

• Trigonometric polynomials x 7→ e−2πi〈x,ξ〉 on D = [0, 1]d are a BOS with K = 1
with respect to the Lebesgue-measure.

• Fourier matrices (or any other type of orthonormal matrices) F with

Fj,k = 1√
N

e−2πi(j−1)(k−1)/N renormalized by a factor
√

N over CN (here:

D = [N]) with ν(B) = ]B
N

.
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Previous Results

Ω-RIP for Bounded Orthonormal Systems
Krahmer et al. [2015] showed the following theorems for Parseval Frames Ω:

• If Ω and Ψ are incoherent, that is maxi,j |〈ωi , ψj 〉| ≤ K√
N

, and if

m ≥ CsK 2λ2 ln(λ2s) ln(p)

where λ = sup ‖z‖2=1
‖z‖0≤s

‖Ω†Ωz‖1√
s

is the localization factor, then the rescaled

sampling matrix
√

N
m

Φ, where the rows of Φ are chosen at uniformly at random

from Ψ, then with probability exceeding 1− p− ln(2s), Φ, exhibits uniform
recovery via BPDN for s = p − k-cosparse vectors.

• If maxi |〈ωi , ψj 〉| ≤ κj and we construct Φ by choosing rows at random from Ψ

according to the probability measure given by

(
κ2

j

‖κ‖2
2

)
j∈[N]

, then the matrix

1√
m

diag
(
‖κ‖2
κj

)
Φ exhibits uniform recovery for s = p − k-cosparse vectors via

BPDN with probability exceeding 1− p− ln(2s).

• These theorems employ the Ω-RIP.

12 / 25
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The Idea: Null Space Properties

The Null Space Property

• Φ is said to possess the null space property of order k with respect to Ω if for all
S ⊂ I with ]S < p − k

‖ΩS x‖1 < ‖ΩS x‖1 for all x ∈ ker(Φ) \ {0} (Ω-NSP)

• Φ is said to possess the `2-robust null space property of order k with respect to
Ω with constants θ ∈ (0, 1) and τ ≥ 0 if for all S ⊂ I with ]S < p − k

‖ΩS x‖1 <
θ
√

s
‖ΩS x‖1 + τ‖Φx‖2. (Ω-RNSP)

• The robust `2-robust-NSP implies recovery via BPDN with an error bound for
the reconstruction x]

‖x − x]‖2 ≤
C
√

s
σs (Ωx)1 + Dη

where the constants C ,D only depend on the parameters θ, τ as well as the
frame bounds.

13 / 25
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Ω with constants θ ∈ (0, 1) and τ ≥ 0 if for all S ⊂ I with ]S < p − k

‖ΩS x‖1 <
θ
√

s
‖ΩS x‖1 + τ‖Φx‖2. (Ω-RNSP)

• The robust `2-robust-NSP implies recovery via BPDN with an error bound for
the reconstruction x]

‖x − x]‖2 ≤
C
√

s
σs (Ωx)1 + Dη

where the constants C ,D only depend on the parameters θ, τ as well as the
frame bounds.
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Contribution

Theorem [F,Rauhut, ’16]
If Φ ∈ Cm×N is a random subsampling of an orthogonal operator Ψ ∈ CN×N and

‖Ω†Ψ‖∞ ≤
K
√

N
,

where Ω† denotes some dual frame, and

m

ln3(m)
≥ C

Bs

Aθ2(1− δ)2
ln(p)

then with probability exceeding 1− C exp
(
−c mδA

K 2sB

)
the matrix Φ, if obtained from Ψ

by choosing rows uniformly at random, possesses the `2-robust NSP of order s for the

frame Ω with τ =
√

N
mδ

.

Remark
The quantity ‖Ω†Ψ‖∞ can be seen as a generalization of the (local) incoherence.
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`1-minimization and fourier subsampling
Fourier matrices
We consider

min ‖x‖1 subject to Φx = y

where Φ is a subsampling of the Fourier matrix F =
(

1√
N

e−2πi(j−1)(k−1)/N
)

1≤j,k≤N

and Ω = IdN . Then we have

‖Ω†Φ‖∞ =
1
√

N

hence K = 1 in the theorem, which is optimal.

Features
Sampling can be done uniformly at random.

Example lacks application in imaging problems since the im-
age itself must be sparse.

Uniform sampling pattern in
fourier domain
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Wavelet minimization
Wavelet Transformation
Let Ω =W be the orthonormal Wavelet transform and Φ a subsampled Fourier
transform and consider

min ‖Wx‖1 subject to Φx = y

or equivalently min ‖c‖1 subject to ΦW∗c = y . Then (ΦW∗)i,(jk) = ψ̂j,k (xi ) where j

is the scale for the wavelet transform and the (xi )1≤i≤m are the sampling points.

Pros Natural images are often sparse/compressible in wavelets.

Reconstruction form the largest 6% of wavelet coefficients
Cons The sampling points (xi )1≤i≤m need to be drawn uniformly from Rd but also

according to Lebesgue-meassure.

Cons We have K = 2J , where J is the maximal scale employed.
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Wavelet-minimization and Preconditioning

Preconditioning
Instead, consider measurements

(
φ(xi )ψ̂j,k (xi )

)
=1≤i≤m where φ is chosen such that

• φ(x) = C (1 + |x |)1/2+κ for some κ > 0 (intuitively: κ ∈ (0, 1))

•
∫
R2

dx
φ2(x)

= 1.

Then, the preconditioned system
{
φψ̂j,k : j , k as chosen before

}
is a BOS with

respect to the orthogonalization measure dx
φ2(x)

.

Effect

• Sampling can to be carried out according to dx
φ2(x)

.

• We can apply the usual reconstruction theorems and now

have K . 2κJ
√
κ

.

• We only need the father/mother wavelet ψ ∈ C 2(R2).

Sampling pattern in [−1, 1]2
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Examples of wavelet minimization

7.6%

28.5%

Sampling rate m
n2 TV Wavelet Minimization
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Shearlet Frames and Anisotropy

Shearlets
• Main feature: Detects anisotropic features.

• ψj,k,m(x) = 23j/4ψ(S−k A2j x −m) where

Sk =

(
1 −k
0 1

)
and Aa =

(
a 0

0 sgn(a)
√
|a|

)
for some suitable ψ ∈ L2(R2) and parameters j , k,m.

• Obtain a frame SH via suitable truncation and exchange of variables. Those are
not tight in general!
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Shearlet Frames and Anisotropy
Problems & Solutions
We consider min ‖SHx‖1 subject to ‖Φx − y‖2 ≤ η.

• Computing SH†, in order to estimate ‖SH†Ψ‖∞, is extremely computational
expensive in general.

• Kutyniok and Lim [2014] constructed a shearlet frame which

I involves functions which are compactly supported and form a frame for
L2(R2),

I which’s associated dual frame can be stated in closed form and efficiently
computed and

I is moreover composed of orthonormal bases.
I There is an implementation of this frame.
I This frame is not tight in general,

Preconditioning
Again, we need preconditioning in order to avoid sampling over
R2 uniformly. Then,

K = max
x∈R2

|ψ̂†j,k,m(x)φ(x)| . max
j

2j(1/4+2κ)

√
κ

.

Sampling pattern in [−1, 1]2
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Shearlet Frames

7.6%

28.5%

Sampling rate m
n2 TV Shearlet Minimization
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Summary & Conclusion
Advantages

• The theorem allows the usage of arbitrary frames.

• Only analysis sparsity is needed for the theory to work.

• Subsamplings of orthogonal operators actually appear in applications, e.g. in
MRI, CT etc.

• The theory also extends to infinite-dimensional spaces, e.g. L2(Rd ), H2(Ω) etc.

• Side project: Application to real-world CT-data.
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