Analysis ℓ^1 -Minimization in Imaging

Jonathan Fell

Lehrstuhl C für Mathematik (Analysis) RWTH Aachen University

Joint work with Holger Rauhut SIAM IS16 - MS12

23.05.2016

European Research Council Established by the European Commission

Introduction: Analysis Sparsity

Contribution

Applications and Preconditioning

 $\ell^1\text{-minimization}$ and fourier subsampling Wavelet-minimization and Preconditioning Shearlet minimization

Compressed Sensing

Compressed Sensing aims at solving

Ax = y where $x \in \mathbb{C}^N, y \in \mathbb{C}^m, A \in \mathbb{C}^{m \times N}$

for $m \ll N$ under the assumption that x is s-sparse, i.e. $||x||_0 = \sharp\{i : x_i \neq 0\} \leq s$.

Compressed Sensing

Compressed Sensing aims at solving

Ax = y where $x \in \mathbb{C}^N, y \in \mathbb{C}^m, A \in \mathbb{C}^{m \times N}$

for $m \ll N$ under the assumption that x is s-sparse, i.e. $\|x\|_0 = \sharp\{i : x_i \neq 0\} \leq s$.

Basis Pursuit

Algorthmic approach:

$$\min \|x\|_0 \text{ subject to } Ax = y \tag{BP}$$

Compressed Sensing

Compressed Sensing aims at solving

Ax = y where $x \in \mathbb{C}^N, y \in \mathbb{C}^m, A \in \mathbb{C}^{m \times N}$

for $m \ll N$ under the assumption that x is s-sparse, i.e. $\|x\|_0 = \sharp\{i : x_i \neq 0\} \leq s$.

Basis Pursuit

Algorthmic approach:

$$\min \|x\|_1 \text{ subject to } Ax = y \tag{BP}$$

Compressed Sensing

Compressed Sensing aims at solving

Ax = y where $x \in \mathbb{C}^N, y \in \mathbb{C}^m, A \in \mathbb{C}^{m \times N}$

for $m \ll N$ under the assumption that x is s-sparse, i.e. $||x||_0 = \sharp\{i : x_i \neq 0\} \leq s$.

Basis Pursuit

Algorthmic approach:

$$\min \|x\|_1 \text{ subject to } Ax = y \tag{BP}$$

Robust approach:

$$\min \|x\|_1 \text{ subject to } \|Ax - y\|_2 \le \eta \tag{BPDN}$$

where η is an estimate for the noise level.

Sparsity and Modifications

Union of subspaces

Basic idea behind sparsity: the signal x belongs to a union of low-dimensional subspaces:

$$x \in \Sigma_s := \{x \in \mathbb{C}^N \, ; \, \|x\|_0 \le s\} = \bigcup_{\substack{S \subset [N] \\ \#S \le s}} \{x \in \mathbb{C}^N \, ; \, \mathsf{supp}(x) \subset S\}$$

Sparsity and Modifications

Union of subspaces

Basic idea behind sparsity: the signal x belongs to a union of low-dimensional subspaces:

$$x \in \Sigma_s := \{x \in \mathbb{C}^N ; \, \|x\|_0 \le s\} = \bigcup_{\substack{S \subset [N] \\ \#S \le s}} \{x \in \mathbb{C}^N ; \, \operatorname{supp}(x) \subset S\}$$

Modifications

Since x may not be sparse in the standard basis, one may employ an orthonormal operator Θ ∈ O(n), i.e.

```
min ||z||_1 subject to A\Theta^* z = y
```

which is the same as

min $\|\Theta x\|_1$ subject to Ax = y.

Sparsity and Modifications

Union of subspaces

Basic idea behind sparsity: the signal x belongs to a union of low-dimensional subspaces:

$$x \in \Sigma_s := \{x \in \mathbb{C}^N ; \, \|x\|_0 \le s\} = \bigcup_{\substack{S \subset [N] \\ \#S \le s}} \{x \in \mathbb{C}^N ; \, \operatorname{supp}(x) \subset S\}$$

Modifications

Since x may not be sparse in the standard basis, one may employ an orthonormal operator Θ ∈ O(n), i.e.

```
min ||z||_1 subject to A\Theta^* z = y
```

which is the same as

```
min \|\Theta x\|_1 subject to Ax = y.
```

• If x is not sparse, its *discrete gradient* ∇x often is (e.g. for images), hence we minimize

$$\min \|\nabla x\|_1 \text{ subject to } Ax = y. \tag{TV}$$

Restricted Isometry Property

A possesses the Restricted Isometry Property (RIP) of order s if

 $(1-\delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta)\|x\|_2^2 \text{ for all } x \in \Sigma_s \text{ and some } \delta \in (0,1).$

The smallest such δ is called the *Restricted Isometry Constant* δ_s .

Restricted Isometry Property

A possesses the Restricted Isometry Property (RIP) of order s if

$$(1-\delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all $x \in \Sigma_s$ and some $\delta \in (0,1)$.

The smallest such δ is called the *Restricted Isometry Constant* δ_s .

Recovery result

If A has the RIP of order 2s with $\delta_{2s} \leq$ 0.6248 then the minimizer x^{\sharp} of BPDN fulfils

$$\|x-x^{\sharp}\|_{2} \leq C \frac{\sigma_{s}(x)_{1}}{\sqrt{s}} + D\eta$$

where $\sigma_s(x)_1 = \inf_{z:||z||_0 \le s} ||z - x||_1$ is the error of best s-term approximation.

Standard/Benchmark Theorem

If $m \ge C\delta^{-2}s \ln(eN/s)$, then a Gaussian random matrix A possesses the RIP of order s with constant δ with probability exceeding $1 - 2\exp(-\delta^2 m/2C)$.

Standard/Benchmark Theorem

If $m \ge C\delta^{-2}s \ln(eN/s)$, then a Gaussian random matrix A possesses the RIP of order s with constant δ with probability exceeding $1 - 2\exp(-\delta^2 m/2C)$.

Further information

For a thorough introduction, see Foucart and Rauhut [2013]:

The big red book

Analysis and Synthesis

Frames
Let
$$\Omega = \begin{pmatrix} \omega_1^t \\ \vdots \\ \omega_p^t \end{pmatrix} \in \mathbb{C}^{p \times N}$$
 with $p \ge N$ be a *frame* for \mathbb{C}^N , i.e. there exist $A, B > 0$

such that

$$A\|x\|_2^2 \leq \sum_{i=1}^p |\langle x, \omega_i
angle|^2 \leq B\|x\|^2 ext{ for all } x \in \mathbb{C}^N.$$

The sequence $\{\langle x, \omega_i \rangle\}_{i=1}^p$ are the *analysis coefficients* of x. A frame is called *tight* if A = B and *Parseval* if A = B = 1.

Analysis and Synthesis

Frames
Let
$$\Omega = \begin{pmatrix} \omega_1^t \\ \vdots \\ \omega_p^t \end{pmatrix} \in \mathbb{C}^{p \times N}$$
 with $p \ge N$ be a *frame* for \mathbb{C}^N , i.e. there exist $A, B > 0$

such that

$$A\|x\|_2^2 \leq \sum_{i=1}^p |\langle x, \omega_i
angle|^2 \leq B\|x\|^2 ext{ for all } x \in \mathbb{C}^N.$$

The sequence $\{\langle x, \omega_i \rangle\}_{i=1}^p$ are the *analysis coefficients* of *x*. A frame is called *tight* if A = B and *Parseval* if A = B = 1. Since $\{\omega_1, \dots, \omega_N\}$ spans \mathbb{C}^N we can expand

$$x = \sum_{i=1}^{p} c_i \omega_i$$
 for some $c_i \in \mathbb{C}$.

The c_i are the synthesis coefficients. They can be computed via a dual frame $\Omega^{\dagger} \in \mathbb{C}^{N \times p}$, i.e. $c = \Omega^{\dagger} x$. Those are not unique in general.

Analysis and Synthesis

Frames
Let
$$\Omega = \begin{pmatrix} \omega_1^t \\ \vdots \\ \omega_p^t \end{pmatrix} \in \mathbb{C}^{p \times N}$$
 with $p \ge N$ be a *frame* for \mathbb{C}^N , i.e. there exist $A, B > 0$

such that

$$A\|x\|_2^2 \leq \sum_{i=1}^p |\langle x, \omega_i
angle|^2 \leq B\|x\|^2 ext{ for all } x \in \mathbb{C}^N.$$

The sequence $\{\langle x, \omega_i \rangle\}_{i=1}^p$ are the *analysis coefficients* of x. A frame is called *tight* if A = B and *Parseval* if A = B = 1. Since $\{\omega_1, \ldots, \omega_N\}$ spans \mathbb{C}^N we can expand

$$x = \sum_{i=1}^{p} c_i \omega_i$$
 for some $c_i \in \mathbb{C}$.

The c_i are the synthesis coefficients. They can be computed via a dual frame $\Omega^{\dagger} \in \mathbb{C}^{N \times p}$, i.e. $c = \Omega^{\dagger} x$. Those are not unique in general. <u>Remark</u>: The canonical dual frame is $\Omega^{\dagger} = (\Omega^* \Omega)^{-1} \Omega^*$.

Cosparsity

Frame Minimization

Instead of basis pursuit we consider

$$\min \|\Omega x\|_1 \text{ subject to } Ax = y \tag{\Omega-BP}$$

or its robust version

 $\min \|\Omega x\|_1 \text{ subject to } \|Ax - y\|_2 \le \eta \qquad \qquad (\Omega \text{-BPDN})$

under the assumption that x is $\Omega - k$ -cosparse, i.e. $\sharp\{i; \langle \omega_i, x \rangle \neq 0\} \leq p - k$

Cosparsity

Frame Minimization

Instead of basis pursuit we consider

$$\min \|\Omega x\|_1 \text{ subject to } Ax = y \qquad \qquad (\Omega-\mathsf{BP})$$

or its robust version

 $\min \|\Omega x\|_1 \text{ subject to } \|Ax - y\|_2 \leq \eta \qquad \qquad (\Omega\text{-BPDN})$

under the assumption that x is $\Omega - k$ -cosparse, i.e. $\sharp\{i; \langle \omega_i, x \rangle \neq 0\} \leq p - k$

Union of subspaces

Cosparsity comes from the same idea as sparsity: a p - k-cosparse x belongs to

$$\left\{x \in \mathbb{C}^{N} : \|\Omega x\|_{0} \le p - k\right\} = \bigcup_{\substack{S \subseteq [p] \\ \#S \le k}} \{\omega_{i} : i \in S\}^{\perp}$$

We often write s = p - k.

Ω -Restricted Isometry Property (Ω -RIP)

For the analysis, Candes et al. [2011] introduced the $\Omega\text{-RIP}$

 $(1-\delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta)\|x\|_2^2$ for all $\Omega - k - ext{ cosparse } x$

or equivalently

$$(1-\delta)\|\Omega^{\dagger}c\|_2^2 \leq \|A\Omega^{\dagger}c\|_2^2 \leq 1+\delta\|\Omega^{\dagger}c\|_2^2 \text{ for all } c\in \Sigma_s.$$

The smallest $\delta_s \in (0, 1)$ fulfilling either of the inequalities is the *restricted isometry* constant.

Ω -Restricted Isometry Property (Ω -RIP)

For the analysis, Candes et al. [2011] introduced the $\Omega\text{-RIP}$

$$(1-\delta)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1+\delta)\|x\|_2^2$$
 for all $\Omega - k - ext{ cosparse } x$

or equivalently

$$(1-\delta)\|\Omega^{\dagger}c\|_2^2 \leq \|A\Omega^{\dagger}c\|_2^2 \leq 1+\delta\|\Omega^{\dagger}c\|_2^2 \text{ for all } c\in \Sigma_s.$$

The smallest $\delta_s \in (0, 1)$ fulfilling either of the inequalities is the *restricted isometry* constant.

Reconstruction Guarantee

If A has the Ω -RIP with constants $\delta_{2s} \leq 0.08$, then the minimizer x^{\sharp} of BPDN fulfils

$$\|x - x^{\sharp}\|_{2} \leq C \frac{\sigma_{s}(\Omega x)_{1}}{\sqrt{s}} + D\eta$$

where $\sigma_s(\Omega x)_1 = \inf_{z:\|\Omega z\|_0 \le p-k} \|\Omega z - \Omega x\|_1$.

$\Omega\text{-}\mathsf{RIP}$ for Gaussian Random Matrices

• Candes et al. [2011] showed that if Ω is *Parseval* and $m \gtrsim s \ln(p/s)$, then a Gaussian random matrix possesses the Ω -RIP with high probability.

- Candes et al. [2011] showed that if Ω is *Parseval* and $m \gtrsim s \ln(p/s)$, then a Gaussian random matrix possesses the Ω -RIP with high probability.
- The same paper argued, that all matrices classically used in Compressed Sensing (e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Ω -RIP if an additional random sign flip is applied.

- Candes et al. [2011] showed that if Ω is *Parseval* and $m \gtrsim s \ln(p/s)$, then a Gaussian random matrix possesses the Ω -RIP with high probability.
- The same paper argued, that all matrices classically used in Compressed Sensing (e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Ω -RIP if an additional random sign flip is applied.
- Rauhut and Kabanava [2013] showed that if $m\gtrsim \frac{Bs}{A}\ln{(\frac{ep}{s})}$, then a Gaussian random matrix possesses the Ω -RIP with high probability.

- Candes et al. [2011] showed that if Ω is *Parseval* and $m \gtrsim s \ln(p/s)$, then a Gaussian random matrix possesses the Ω -RIP with high probability.
- The same paper argued, that all matrices classically used in Compressed Sensing (e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Ω -RIP if an additional random sign flip is applied.
- Rauhut and Kabanava [2013] showed that if $m\gtrsim \frac{Bs}{A}\ln{(\frac{ep}{s})}$, then a Gaussian random matrix possesses the Ω -RIP with high probability.
- What about other types of measurement matrices?

- Candes et al. [2011] showed that if Ω is *Parseval* and $m \gtrsim s \ln(p/s)$, then a Gaussian random matrix possesses the Ω -RIP with high probability.
- The same paper argued, that all matrices classically used in Compressed Sensing (e.g. Rademacher, Bernoulli, Steinhaus, etc.) obey the Ω -RIP if an additional random sign flip is applied.
- Rauhut and Kabanava [2013] showed that if $m\gtrsim \frac{Bs}{A}\ln{(\frac{ep}{s})}$, then a Gaussian random matrix possesses the Ω -RIP with high probability.
- What about other types of measurement matrices?
 "We will see easily that Gaussian matrices and other random compressed sensing matrices satisfy the Ω-RIP" Candes et al. [2011]

Interlude: Sampling in Bounded Orthonormal Systems

Bounded Orthonormal Systems (BOS)

Let \mathcal{D} a non-empty set endowed with a probability measure ν and $\Psi := \{\psi_1 \dots, \psi_N\}$ be a system of pairwise orthonormal functions on \mathcal{D} with respect to ν that is

$$\int_{\mathcal{D}}\psi_i(t)\overline{\psi_j}(t)d
u(t)=\delta_{i,j}$$

 Ψ is an bounded orthonormal system if there exists a constant $K\geq 0$ such that

 $\max_{i\in[N]}\sup_{t\in\mathcal{D}}|\psi_i(t)|\leq K$

Interlude: Sampling in Bounded Orthonormal Systems

Bounded Orthonormal Systems (BOS)

Let \mathcal{D} a non-empty set endowed with a probability measure ν and $\Psi := \{\psi_1 \dots, \psi_N\}$ be a system of pairwise orthonormal functions on \mathcal{D} with respect to ν that is

$$\int_{\mathcal{D}}\psi_i(t)\overline{\psi_j}(t)d
u(t)=\delta_{i,j}$$

 Ψ is an *bounded orthonormal system* if there exists a constant $K \ge 0$ such that

 $\max_{i \in [N]} \sup_{t \in \mathcal{D}} |\psi_i(t)| \le K$

Examples

- Trigonometric polynomials $x \mapsto e^{-2\pi i \langle x, \xi \rangle}$ on $\mathcal{D} = [0, 1]^d$ are a BOS with $\mathcal{K} = 1$ with respect to the Lebesgue-measure.
- Fourier matrices (or any other type of orthonormal matrices) \mathcal{F} with $\mathcal{F}_{j,k} = \frac{1}{\sqrt{N}} e^{-2\pi i (j-1)(k-1)/N}$ renormalized by a factor \sqrt{N} over \mathbb{C}^N (here: $\mathcal{D} = [N]$) with $\nu(B) = \frac{\#B}{N}$.

Previous Results

$\Omega\text{-}\mathsf{RIP}$ for Bounded Orthonormal Systems

Krahmer et al. [2015] showed the following theorems for Parseval Frames $\Omega\colon$

• If Ω and Ψ are incoherent, that is $\max_{i,j} |\langle \omega_i, \psi_j \rangle| \leq \frac{\kappa}{\sqrt{N}}$, and if

$$m \ge CsK^2\lambda^2\ln(\lambda^2 s)\ln(p)$$

where $\lambda = \sup_{\substack{\|z\|_{2}=1\\\|z\|_{0} \leq s}} \frac{\|\Omega^{\dagger} \Omega z\|_{1}}{\sqrt{s}}$ is the *localization factor*, then the rescaled sampling matrix $\sqrt{\frac{N}{m}} \Phi$, where the rows of Φ are chosen at uniformly at random from Ψ , then with probability exceeding $1 - p^{-\ln(2s)}$, Φ , exhibits uniform recovery via BPDN for s = p - k-cosparse vectors.

Previous Results

$\Omega\text{-}\mathsf{RIP}$ for Bounded Orthonormal Systems

Krahmer et al. [2015] showed the following theorems for Parseval Frames Ω :

• If Ω and Ψ are incoherent, that is $\max_{i,j} |\langle \omega_i, \psi_j \rangle| \leq \frac{\kappa}{\sqrt{N}}$, and if

$$m \geq Cs K^2 \lambda^2 \ln(\lambda^2 s) \ln(p)$$

where $\lambda = \sup_{\substack{\|z\|_{2}=1\\\|z\|_{0} \leq s}} \frac{\|\Omega^{\dagger} \Omega z\|_{1}}{\sqrt{s}}$ is the *localization factor*, then the rescaled sampling matrix $\sqrt{\frac{N}{m}} \Phi$, where the rows of Φ are chosen at uniformly at random from Ψ , then with probability exceeding $1 - p^{-\ln(2s)}$, Φ , exhibits uniform recovery via BPDN for s = p - k-cosparse vectors.

• If $\max_i |\langle \omega_i, \psi_j \rangle| \leq \kappa_j$ and we construct Φ by choosing rows at random from Ψ according to the probability measure given by $\left(\frac{\kappa_j^2}{\|\kappa\|_2^2}\right)_{j \in [N]}$, then the matrix $\frac{1}{\sqrt{m}} \operatorname{diag}\left(\frac{\|\kappa\|_2}{\kappa_i}\right) \Phi$ exhibits uniform recovery for s = p - k-cosparse vectors via

BPDN with probability exceeding $1 - p^{-\ln(2s)}$.

Previous Results

$\Omega\text{-}\mathsf{RIP}$ for Bounded Orthonormal Systems

Krahmer et al. [2015] showed the following theorems for Parseval Frames Ω :

• If Ω and Ψ are incoherent, that is $\max_{i,j} |\langle \omega_i, \psi_j \rangle| \leq \frac{\kappa}{\sqrt{N}}$, and if

$$m \ge CsK^2\lambda^2\ln(\lambda^2 s)\ln(p)$$

where $\lambda = \sup_{\substack{\|z\|_2=1\\\|z\|_0 \le s}} \frac{\|\Omega^{\dagger} \Omega z\|_1}{\sqrt{s}}$ is the *localization factor*, then the rescaled sampling matrix $\sqrt{\frac{N}{m}} \Phi$, where the rows of Φ are chosen at uniformly at random from Ψ , then with probability exceeding $1 - p^{-\ln(2s)}$, Φ , exhibits uniform recovery via BPDN for s = p - k-cosparse vectors.

• If $\max_i |\langle \omega_i, \psi_j \rangle| \le \kappa_j$ and we construct Φ by choosing rows at random from Ψ according to the probability measure given by $\left(\frac{\kappa_j^2}{\|\kappa\|_2^2}\right)_{j \in [N]}$, then the matrix

 $\frac{1}{\sqrt{m}} \operatorname{diag}\left(\frac{\|\kappa\|_2}{\kappa_j}\right) \Phi \text{ exhibits uniform recovery for } s = p - k \text{-cosparse vectors via} \\ \text{BPDN with probability exceeding } 1 - p^{-\ln(2s)}.$

• These theorems employ the $\Omega\text{-RIP}.$

The Idea: Null Space Properties

The Null Space Property

• Φ is said to possess the null space property of order k with respect to Ω if for all $S \subset I$ with $\sharp S$

 $\|\Omega_{S} x\|_{1} < \|\Omega_{\overline{S}} x\|_{1} \text{ for all } x \in \ker(\Phi) \setminus \{0\}$ (Ω-NSP)

The Idea: Null Space Properties

The Null Space Property

• Φ is said to possess the null space property of order k with respect to Ω if for all $S \subset I$ with $\sharp S$

$$\|\Omega_{S} x\|_{1} < \|\Omega_{\overline{S}} x\|_{1} \text{ for all } x \in \ker(\Phi) \setminus \{0\}$$
 (Ω -NSP)

• Φ is said to possess the ℓ^2 -robust null space property of order k with respect to Ω with constants $\theta \in (0, 1)$ and $\tau \ge 0$ if for all $S \subset I$ with $\sharp S$

$$\|\Omega_{5}x\|_{1} < \frac{\theta}{\sqrt{s}}\|\Omega_{\overline{5}}x\|_{1} + \tau\|\Phi x\|_{2}. \tag{Ω-RNSP}$$

The Idea: Null Space Properties

The Null Space Property

• Φ is said to possess the null space property of order k with respect to Ω if for all $S \subset I$ with $\sharp S$

$$\|\Omega_{S} x\|_{1} < \|\Omega_{\overline{S}} x\|_{1} \text{ for all } x \in \ker(\Phi) \setminus \{0\}$$
 (Ω -NSP)

• Φ is said to possess the ℓ^2 -robust null space property of order k with respect to Ω with constants $\theta \in (0, 1)$ and $\tau \ge 0$ if for all $S \subset I$ with $\sharp S$

$$\|\Omega_{S} x\|_{1} < \frac{\theta}{\sqrt{s}} \|\Omega_{\overline{S}} x\|_{1} + \tau \|\Phi x\|_{2}. \tag{Ω-RNSP}$$

- The robust $\ell^2\text{-robust-NSP}$ implies recovery via BPDN with an error bound for the reconstruction x^\sharp

$$\|x - x^{\sharp}\|_2 \leq \frac{C}{\sqrt{s}}\sigma_s(\Omega x)_1 + D\eta$$

where the constants ${\it C}, {\it D}$ only depend on the parameters θ, τ as well as the frame bounds.

Theorem [F,Rauhut, '16]

If $\Phi \in \mathbb{C}^{m imes N}$ is a random subsampling of an orthogonal operator $\Psi \in \mathbb{C}^{N imes N}$ and

$$\|\Omega^{\dagger}\Psi\|_{\infty} \leq \frac{\kappa}{\sqrt{N}},$$

where Ω^{\dagger} denotes some dual frame, and

$$rac{m}{\ln^3(m)} \geq C rac{Bs}{A heta^2(1-\delta)^2} \ln(p)$$

then with probability exceeding $1 - C \exp\left(-c \frac{m\delta A}{K^2 s B}\right)$ the matrix Φ , if obtained from Ψ by choosing rows uniformly at random, possesses the ℓ^2 -robust NSP of order *s* for the frame Ω with $\tau = \sqrt{\frac{N}{m\delta}}$.

Theorem [F,Rauhut, '16]

If $\Phi \in \mathbb{C}^{m imes N}$ is a random subsampling of an orthogonal operator $\Psi \in \mathbb{C}^{N imes N}$ and

$$\|\Omega^{\dagger}\Psi\|_{\infty} \leq \frac{\kappa}{\sqrt{N}},$$

where Ω^{\dagger} denotes some dual frame, and

$$rac{m}{\ln^3(m)} \geq C rac{Bs}{A heta^2(1-\delta)^2} \ln(p)$$

then with probability exceeding $1 - C \exp\left(-c \frac{m\delta A}{K^2 s B}\right)$ the matrix Φ , if obtained from Ψ by choosing rows uniformly at random, possesses the ℓ^2 -robust NSP of order *s* for the frame Ω with $\tau = \sqrt{\frac{N}{m\delta}}$.

Remark

The quantity $\|\Omega^{\dagger}\Psi\|_{\infty}$ can be seen as a generalization of the (local) incoherence.

ℓ^1 -minimization and fourier subsampling Fourier matrices

We consider

min $||x||_1$ subject to $\Phi x = y$

where Φ is a subsampling of the Fourier matrix $\mathcal{F} = \left(\frac{1}{\sqrt{N}}e^{-2\pi i(j-1)(k-1)/N}\right)_{1 \leq j,k \leq N}$ and $\Omega = Id_N$. Then we have

$$\|\Omega^{\dagger}\Phi\|_{\infty} = rac{1}{\sqrt{N}}$$

hence K = 1 in the theorem, which is optimal.

ℓ^1 -minimization and fourier subsampling Fourier matrices We consider

JIISIGEI

min $||x||_1$ subject to $\Phi x = y$

where Φ is a subsampling of the Fourier matrix $\mathcal{F} = \left(\frac{1}{\sqrt{N}}e^{-2\pi i(j-1)(k-1)/N}\right)_{1 \leq j,k \leq N}$ and $\Omega = Id_N$. Then we have

$$\|\Omega^{\dagger}\Phi\|_{\infty} = \frac{1}{\sqrt{N}}$$

hence K = 1 in the theorem, which is optimal.

Features

Sampling can be done uniformly at random.

Uniform sampling pattern in fourier domain

ℓ^1 -minimization and fourier subsampling Fourier matrices We consider

min $||x||_1$ subject to $\Phi x = y$

where Φ is a subsampling of the Fourier matrix $\mathcal{F} = \left(\frac{1}{\sqrt{N}}e^{-2\pi i(j-1)(k-1)/N}\right)_{1 \leq j,k \leq N}$ and $\Omega = Id_N$. Then we have

$$\|\Omega^{\dagger}\Phi\|_{\infty} = \frac{1}{\sqrt{N}}$$

hence K = 1 in the theorem, which is optimal.

Features

Sampling can be done uniformly at random.

Example lacks application in imaging problems since the image itself must be sparse.

Uniform sampling pattern in fourier domain

Wavelet minimization

Wavelet Transformation

Let $\Omega=\mathcal{W}$ be the orthonormal Wavelet transform and Φ a subsampled Fourier transform and consider

min $\|\mathcal{W}x\|_1$ subject to $\Phi x = y$

or equivalently min $||c||_1$ subject to $\Phi \mathcal{W}^* c = y$. Then $(\Phi \mathcal{W}^*)_{i,(jk)} = \widehat{\psi}_{j,k}(x_i)$ where j is the scale for the wavelet transform and the $(x_i)_{1 \le i \le m}$ are the sampling points.

Wavelet minimization

Wavelet Transformation

Let $\Omega=\mathcal{W}$ be the orthonormal Wavelet transform and Φ a subsampled Fourier transform and consider

min $\|\mathcal{W}x\|_1$ subject to $\Phi x = y$

or equivalently min $||c||_1$ subject to $\Phi \mathcal{W}^* c = y$. Then $(\Phi \mathcal{W}^*)_{i,(jk)} = \widehat{\psi}_{j,k}(x_i)$ where j is the scale for the wavelet transform and the $(x_i)_{1 \le i \le m}$ are the sampling points.

Pros Natural images are often sparse/compressible in wavelets.

Reconstruction form the largest 6% of wavelet coefficients

Wavelet minimization

Wavelet Transformation

Let $\Omega=\mathcal{W}$ be the orthonormal Wavelet transform and Φ a subsampled Fourier transform and consider

min $\|\mathcal{W}x\|_1$ subject to $\Phi x = y$

or equivalently min $||c||_1$ subject to $\Phi \mathcal{W}^* c = y$. Then $(\Phi \mathcal{W}^*)_{i,(jk)} = \widehat{\psi}_{j,k}(x_i)$ where j is the scale for the wavelet transform and the $(x_i)_{1 \le i \le m}$ are the sampling points.

Pros Natural images are often sparse/compressible in wavelets.

 $\begin{array}{l} \mbox{Reconstruction form the largest 6\% of wavelet coefficients} \\ \mbox{Cons The sampling points } (x_i)_{1 \leq i \leq m} \mbox{ need to be drawn uniformly from } \mathbb{R}^d \mbox{ but also according to Lebesgue-meassure.} \end{array}$

Cons We have $K = 2^J$, where J is the maximal scale employed.

Preconditioning

Instead, consider measurements $(\phi(x_i)\widehat{\psi}_{j,k}(x_i)) =_{1 \le i \le m}$ where ϕ is chosen such that

- $\phi(x) = C (1 + |x|)^{1/2 + \kappa}$ for some $\kappa > 0$ (intuitively: $\kappa \in (0, 1)$)
- $\int_{\mathbb{R}^2} \frac{dx}{\phi^2(x)} = 1.$

Then, the preconditioned system $\left\{\phi\widehat{\psi}_{j,k} : j, k \text{ as chosen before}\right\}$ is a BOS with respect to the *orthogonalization measure* $\frac{dx}{\phi^2(x)}$.

Preconditioning

Instead, consider measurements $(\phi(x_i)\widehat{\psi}_{j,k}(x_i)) =_{1 \le i \le m}$ where ϕ is chosen such that

•
$$\phi(x) = C (1 + |x|)^{1/2 + \kappa}$$
 for some $\kappa > 0$ (intuitively: $\kappa \in (0, 1)$)

•
$$\int_{\mathbb{R}^2} \frac{dx}{\phi^2(x)} = 1.$$

Then, the preconditioned system $\left\{\phi\widehat{\psi}_{j,k} : j, k \text{ as chosen before}\right\}$ is a BOS with respect to the *orthogonalization measure* $\frac{dx}{\phi^2(x)}$.

Effect

• Sampling can to be carried out according to $\frac{dx}{\phi^2(x)}$.

Sampling pattern in $[-1, 1]^2$

Preconditioning

Instead, consider measurements $(\phi(x_i)\widehat{\psi}_{j,k}(x_i)) =_{1 \le i \le m}$ where ϕ is chosen such that

•
$$\phi(x) = C (1 + |x|)^{1/2 + \kappa}$$
 for some $\kappa > 0$ (intuitively: $\kappa \in (0, 1)$)

•
$$\int_{\mathbb{R}^2} \frac{dx}{\phi^2(x)} = 1.$$

Then, the preconditioned system $\left\{\phi\widehat{\psi}_{j,k} : j, k \text{ as chosen before}\right\}$ is a BOS with respect to the *orthogonalization measure* $\frac{dx}{\phi^2(x)}$.

Effect

- Sampling can to be carried out according to $\frac{dx}{\phi^2(x)}$.
- We can apply the usual reconstruction theorems and now have $K \lesssim \frac{2^{\kappa J}}{\sqrt{\kappa}}$.

Sampling pattern in $[-1, 1]^2$

Preconditioning

Instead, consider measurements $(\phi(x_i)\widehat{\psi}_{j,k}(x_i)) =_{1 \le i \le m}$ where ϕ is chosen such that

•
$$\phi(x) = C (1 + |x|)^{1/2 + \kappa}$$
 for some $\kappa > 0$ (intuitively: $\kappa \in (0, 1)$)

•
$$\int_{\mathbb{R}^2} \frac{dx}{\phi^2(x)} = 1.$$

Then, the preconditioned system $\left\{\phi\widehat{\psi}_{j,k} : j, k \text{ as chosen before}\right\}$ is a BOS with respect to the *orthogonalization measure* $\frac{dx}{\phi^2(x)}$.

Effect

- Sampling can to be carried out according to $\frac{dx}{\phi^2(x)}$.
- We can apply the usual reconstruction theorems and now have $K \lesssim \frac{2^{\kappa J}}{\sqrt{\kappa}}$.

Sampling pattern in $[-1, 1]^2$

Introduction: Analysis Sparsity

Contribution

References

Examples of wavelet minimization

7.6%

Sampling rate $\frac{m}{n^2}$

Introduction: Analysis Sparsity

Contribution

References

Examples of wavelet minimization

Introduction: Analysis Sparsity

Contribution

References

Examples of wavelet minimization

7.6%

Sampling rate $\frac{m}{n^2}$

Wavelet Minimization

Examples of wavelet minimization

7.6%

28.5%

Sampling rate $\frac{m}{n^2}$

Shearlets

• Main feature: Detects anisotropic features.

Shearlets

- Main feature: Detects anisotropic features.
- $\psi_{j,k,m}(x) = 2^{3j/4} \psi(S_{-k}A_{2^j}x m)$ where

$$S_k = \left(egin{array}{cc} 1 & -k \ 0 & 1 \end{array}
ight)$$
 and $A_a = \left(egin{array}{cc} a & 0 \ 0 & {
m sgn}(a)\sqrt{|a|} \end{array}
ight)$

for some suitable $\psi \in L^2(\mathbb{R}^2)$ and parameters j,k,m.

Shearlets

- Main feature: Detects anisotropic features.
- $\psi_{j,k,m}(x) = 2^{3j/4} \psi(S_{-k}A_{2^j}x m)$ where

$$S_k = \left(egin{array}{cc} 1 & -k \\ 0 & 1 \end{array}
ight)$$
 and $A_a = \left(egin{array}{cc} a & 0 \\ 0 & {
m sgn}(a)\sqrt{|a|} \end{array}
ight)$

for some suitable $\psi \in L^2(\mathbb{R}^2)$ and parameters j, k, m.

- Obtain a frame \mathcal{SH} via suitable truncation and exchange of variables. Those are not tight in general!

Shearlets

- Main feature: Detects anisotropic features.
- $\psi_{j,k,m}(x) = 2^{3j/4} \psi(S_{-k}A_{2^j}x m)$ where

$$S_k = \left(egin{array}{cc} 1 & -k \\ 0 & 1 \end{array}
ight)$$
 and $A_a = \left(egin{array}{cc} a & 0 \\ 0 & {
m sgn}(a)\sqrt{|a|} \end{array}
ight)$

for some suitable $\psi \in L^2(\mathbb{R}^2)$ and parameters j, k, m.

- Obtain a frame \mathcal{SH} via suitable truncation and exchange of variables. Those are not tight in general!

Problems & Solutions

We consider min $\|SHx\|_1$ subject to $\|\Phi x - y\|_2 \le \eta$.

• Computing \mathcal{SH}^{\dagger} , in order to estimate $\|\mathcal{SH}^{\dagger}\Psi\|_{\infty}$, is extremely computational expensive in general.

Problems & Solutions

We consider min $\|SHx\|_1$ subject to $\|\Phi x - y\|_2 \le \eta$.

- Computing \mathcal{SH}^{\dagger} , in order to estimate $\|\mathcal{SH}^{\dagger}\Psi\|_{\infty}$, is extremely computational expensive in general.
- Kutyniok and Lim [2014] constructed a shearlet frame which
 - ▶ involves functions which are compactly supported and form a frame for $L^2(\mathbb{R}^2)$,
 - which's associated dual frame can be stated in closed form and efficiently computed and
 - ▶ is moreover composed of orthonormal bases.
 - ▶ There is an implementation of this frame.
 - ▶ This frame is <u>not</u> tight in general,

Problems & Solutions

We consider min $\|SHx\|_1$ subject to $\|\Phi x - y\|_2 \le \eta$.

- Computing \mathcal{SH}^{\dagger} , in order to estimate $\|\mathcal{SH}^{\dagger}\Psi\|_{\infty}$, is extremely computational expensive in general.
- Kutyniok and Lim [2014] constructed a shearlet frame which
 - ▶ involves functions which are compactly supported and form a frame for $L^2(\mathbb{R}^2)$,
 - which's associated dual frame can be stated in closed form and efficiently computed and
 - ▶ is moreover composed of orthonormal bases.
 - ▶ There is an implementation of this frame.
 - ▶ This frame is <u>not</u> tight in general,

Preconditioning

Again, we need preconditioning in order to avoid sampling over \mathbb{R}^2 uniformly. Then,

$$\mathcal{K} = \max_{x \in \mathbb{R}^2} |\widehat{\psi}_{j,k,m}^\dagger(x) \phi(x)| \lesssim \max_j rac{2^{j(1/4+2\kappa)}}{\sqrt{\kappa}}$$

Sampling pattern in $[-1, 1]^2$

7.6%

7.6%

28.5%

Sampling rate $\frac{m}{n^2}$

Advantages

• The theorem allows the usage of *arbitrary* frames.

- The theorem allows the usage of *arbitrary* frames.
- Only *analysis* sparsity is needed for the theory to work.

- The theorem allows the usage of *arbitrary* frames.
- Only *analysis* sparsity is needed for the theory to work.
- Subsamplings of orthogonal operators actually appear in applications, e.g. in MRI, CT etc.

- The theorem allows the usage of *arbitrary* frames.
- Only *analysis* sparsity is needed for the theory to work.
- Subsamplings of orthogonal operators actually appear in applications, e.g. in MRI, CT etc.
- The theory also extends to infinite-dimensional spaces, e.g. $L^2(\mathbb{R}^d), \ H^2(\Omega)$ etc.

- The theorem allows the usage of *arbitrary* frames.
- Only analysis sparsity is needed for the theory to work.
- Subsamplings of orthogonal operators actually appear in applications, e.g. in MRI, CT etc.
- The theory also extends to infinite-dimensional spaces, e.g. $L^2(\mathbb{R}^d)$, $H^2(\Omega)$ etc.
- Side project: Application to real-world CT-data.

Papers & Sources

- E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59–73, 2011.
- J. Fell and H. Rauhut. Analysis I1-minimization in imaging. In preparation, 2016.
- S. Foucart and H. Rauhut. A mathematical introduction to compressive sensing. Springer, 2013.
- F. Krahmer, D. Needell, and R. Ward. Compressive sensing with redundant dictionaries and structured measurements. SIAM Journal on Mathematical Analysis, 47(6):4606–4629, 2015.
- G. Kutyniok and W.-Q. Lim. Dualizable shearlet frames and sparse approximation. arXiv preprint arXiv:1411.2303, 2014.
- H. Rauhut and M. Kabanava. Analysis I1-recovery with frames and gaussian measurements. 2013.

