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Definition

Variational Gram Functions

Let x,,...,X,, be vectors in R". Given a compact set M < S™, define

m

, X,;,) = max M;; x;rxj
MeM 44

which we call variational Gram function (VGF) of x;,...,x,, induced by M.
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Let x;,...,X%,, be vectors in R™. Given a compact set M < S™, define
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which we call variational Gram function (VGF) of x;,...,x,, induced by M.

Let X = [x; -+ X,,] € R®*™. Pairwise inner products x! x; are entries of the
Gram matrix X7 X,

| _ T _ T
Qv (X) 13}?%({<X X, M) max tr(XMX")
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Definition

Variational Gram Functions

Let x,,...,X,, be vectors in R™. Given a compact set M < S™, define

MeM i fo

which we call variational Gram function (VGF) of x,,...,x,, induced by M.

Let X = [x; -+ X,,] € R®*™_ Pairwise inner products x! x; are entries of the
Gram matrix X1 X,

- T T
QA((X)—E%(X X, M) = max tr(XMX")

a.k.a support function of set M, at X7 X

(support function of set M is  Sy¢(Y) = maxyen (Y, M) )
3
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Definition

Variational Gram Functions

Examples.
» norms on R™: for M = {uu’ : |u|* <1},

Q(x) = max x’ Mx = |x|*
MeM

» for ellipsoid M = {M : Y j=il (M;;/M;;)? < 1},

Q(X) (i A/Iz (x? xJ)2>

/2

ij=1

» for box M = {M : -zﬁij < M,~j < I_‘_i,']‘}.
QX)= max Y Myxx;= ), Milx]x,|

li\]u‘gi\ju l._}=1 L'.)=l

R
» for box M whenn =1, Q(x) = |[x|T M|x]|
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Definition

Outline

motivating applications; interpretations

convex analysis of VGFs:
representations, conjugate, subdifferential, prox operator

optimization algorithms for regularized loss minimization

min £(X) + A(X)

application to a hierarchical classification problem
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Motivation

Motivating Applications

First, a toy example:
» linear measurements of x = [z, --- z;5] are given; i.e., b = Ax.

» x has at most one nonzero entry on any root-leaf path of this tree

B PN
@ @ @ @©

o 00 08 0T

» can minimize

Q(X)=Z Z wula:,xj|

P (i,7)ep
over Ax =Db.

(e.g., exclusive lasso [Zhou,Jin,Hoi "10] nonoverlapping case)

k
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Motivation

Motivating Applications

A machine learning application: hierarchical classification vs flat classification

three classes recursive labeling
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Motivation

Motivating Applications

A machine learning application: hierarchical classification vs flat classification

L

arbans)
x'd>x!d

three classes recursive labeling Xetikd L Xoaraie

classifiers of different layers use different features (or different combinations
of same features)

subspace of classifiers desired to be orthogonal to parent classifiers
(hierarchical via orthogonal transfer [Zhou,Xiao,Wu'11])

x; L x5 and x; L xs are desired

Q(xXpm, Xf, X1, Xp) = W) |x;1‘xf| + wo IXZ‘XH

R
other transfer learning methods e.g., [Cai, Hoffman'04; Dekel et al, 04]
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Motivation

Promoting pairwise structure

More generally, for x;,...,x,, € R"

» x7x;'s reveal essential information about relative positions and orientations;

can serve as a measure for various properties such as orthogonality

» Minimizing

m

Q(xla- . ,Xm) = Z ‘Wij |x’irle
1

i,j=

promotes pairwise orthogonality for certain pairs specified by M

[Zhou,Xiao,Wu, '11] introduced this penalty for hierarchical classification.
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Motivation

Promoting pairwise structure

when is it convex?

Theorem (Zhou,Xiao,Wu, ‘11)
Q is convex if M > 0 and M, the comparison matrix of M is PSD, where

M={ —M;; i+#j

My i=j

condition is also necessary if n = m — 1.

proof: brute-force (verify def. of convexity)

question: when is a general VGF convex?
R
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Maotivation

Promoting pairwise structure

More generally, for x;,...,x,, € R"

» xI'x; 's reveal essential information about relative positions and orientations;

can serve as a measure for various properties such as orthogonality

» Minimizing

gy’

Q(X], co ,Xm) = Z ‘Wij |X?Xj|

i,j=1

promotes pairwise orthogonality for certain pairs specified by M

[Zhou,Xiao,Wu, '11] introduced this penalty for hierarchical classification.
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Convex Analysis of VGFs

Convexity

Given compact set M,  : R"*™ — R

Q(X) = max tr(XMX7T)
MeM

Theorem

Q(X) is convex, if and only if for every X there exists a positive semidefinite
M € M satisfying Q(X) = tr(XMX7T).

intuition: for every X, (2(X) can be written as a convex quadratic, hence convex

corollary: when Q is convex, /€ is pointwise max of weighted Frobenius norms

VX - L, XM

but when is the condition sitisfied?
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Convex Analysis of VGFs

Convexity

polytope: M = conv{M,,...,M,}. let M be the smallest subset of vertices
satisfying -
max tr(XMX?) = max tr(XMX7T), VX

MeM MeM off

Theorem
If M is a polytope, ) is convex if and only if M ¢+ ST.

gray: set M; red: maximal points w.r.t. PSD cone; green: Mg

convexity test: check whether green vertices are PSD. . .

Variational Gram Functions




Convex Analysis of VGFs

Convexity

Examples.
» For M = {l\’[: ll\/IijI < ;Wij} ¢ Q(X) = Zm JWZ'J'.X;-I‘XJ‘I

i,j=1

Meff c {M - Miz‘ = Mii ] 1\/11']' = il\/_[ij fOf 1 # ]}

if n>m — 1, Mesr = ST is equivalent to: comparison matrix of M is PSD.
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Convex Analysis of VGFs

Convexity
Examples.
» For M= {M: |M;;| < M;;},; QUX) =2 1] M, ;|xTx;]|
Meff = {1\4 " A/[ii = A—/[ii ; 1\/Il-j = il\/—[,‘j for 1 = ]}

if n>m — 1, Mesr = ST is equivalent to: comparison matrix of M is PSD.

» For M={M: 3" _ (M;;/M;;)? <1},

1,7=1

QX) = (Z M2 (x] xj)z) |

i,j=1

Af_Iz-j > 0 ensures convexity (proof by examining Me).
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Convex Analysis of VGFs

Convexity

Examples.

» Squared norm ||x|* for x € R™ are convex VGFs corresponding to
M= {uul: |ul* <1}
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Convex Analysis of VGFs

Convexity

Examples.

» Squared norm |x|? for x € R™ are convex VGFs corresponding to
M= {uul: |ul* <1}

» As a function of Euclidean distance matrix D;; = 3[x; — x;|3

= | Ty = 21X — Xs; ,2
Qv (X) max tr(XMX™) max Z_JAu”Xz ;2

where M = {diag(A1) — A: Ae A}.

simple sufficient condition: A>0forall Ace A = M >0forall MeM
= ()l IS convex in X .
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Convex Analysis of VGFs

Conjugate Function

Conjugate function of Q(X) = maxzen tr(XMX7T) is

Q*(Y) =1 \iznt;t {tr(YM'Y?") : range(Y") range(M)}
MeEJY

: M Y?
; \1Infc {tr(C) : [Y C] >0 ,]WEM}

and is “semidefinite representable”
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Convex Analysis of VGFs

Conjugate Function

Conjugate function of Q(X) = maxyene tr(XMX?) is

Q*(Y) =: \ilnf\t {tr(YM'Y") : range(Y") < range(M)}
MelY

P U3 (M YT
\1]nfc {tr(C) . [Y C >0 ,MeM

and is "semidefinite representable”

the dual norm (if M's invertible):

20*(X) = inf |XM™'2|p

MeM

special case.

» withM={M: ol <M < BI, tr(M) = 4}, gives cluster norm defined by
[Jacob, Bach,Vert '08]; can be interpreted as a convex relaxation of k-means.

R
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Convex Analysis of VGFs

Subdifferential

mi
Q(X) = max tr(XMX”) = max M;;x] x;
MeM MeM L4

subdifferential: Q(X) = {2XM: MeM, tr(XMX7") = Q(X)}

Example: o
For Q(X) = 2% ) Mij|x{x;],

i,j=1

QX)) = conv{2X M : M;; = M;;sign(x; x;) if (x;,x;)#0,

|IMi;| < M;; otherwise}

([Zhou et al '11] give just one subgradient)

R
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Structured optimization with VGF

QOutline.

» convex analysis of VGFs

» optimization problems and algorithms
» connections & applications; numerical experiment
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Structured optimization with VGF

Regularized Loss Minimization

solve regularized loss minimization problem

Jop =min L(X ;data) + AQ(X)

common losses include: norm loss, Huber loss, hinge, logistic, etc.

» when loss £(X) is smooth: e.g., can iteratively update variables X (*):

X®+1 = prox_ g, (X(‘) = mvg(xm)) . t=0,1,2,...,

v; IS step size
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Structured optimization with VGF

Regularized Loss Minimization

solve regularized loss minimization problem

Jop =min L(X ;data) + AQ(X)

common losses include: norm loss, Huber loss, hinge, logistic, etc.

» when loss £(X) is smooth: e.g., can iteratively update variables X(*):

X (E+1) Prox., q (X(‘) - “/tV,C(X(‘))) ; t=0.3.2, ..,

v; IS step size

» when L£(X) is not smooth: subgradient-based methods; e.g. Regularized
Dual Averaging [Xiao '11]

» convergence can be very slow
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Structured optimization with VGF

Regularized Loss Minimization

solve regularized loss minimization problem

Jopt = m)%n L(X ;data) + AQ(X)

common losses include: norm loss, Huber loss, hinge, logistic, etc.

» when loss £(X) is smooth: e.g., can iteratively update variables X (*):

X (t+1) Prox., q (X(‘) — 'ytVE(X(‘))) . te=0,1.2. 004

v: IS step size

» when L£(X) is not smooth: subgradient-based methods; e.g. Regularized
Dual Averaging [Xiao '11]

» convergence can be very slow

we focus on loss functions with special conjugate structure, that can be exploited
together with the structure bf the VGF penalty
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Structured optimization with VGF

VGF with Structured Loss Functions

First, exploit the smooth variational representation of a VGF,

Jopt = min max L£(X ;data) + Atr(XMX1)
X MeM

note: robust optimization interpretation

Variational Gram Functions




Structured optimization with VGF

VGF with Structured Loss Functions

First, exploit the smooth variational representation of a VGF,

Jopt = min max L£(X ;data) + Ar(XMXT)
X MeM

note: robust optimization interpretation

Second, consider loss functions with “nice” representation (called Fenchel-type):

L(X) = max (X,D(G)) - L(G)

Geg

where £(-) is convex, G is compact, and D(-) is a linear operator.

» luckily, covers many important cases:
norm loss, Huber loss, binary and muti-class hinge loss. ..

» Then,

= i} _f T
Jopt = min %1%([ (X,D(G)) - L(G) + Atr(XMX")
E

L
convex-concave saddle-point problem!
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Structured optimization with VGF

Mirror-Prox Algorithm

Jopt = min max (X, D(G)) — L(G) + X tr(XMXT)
X &l

Setup. find the saddle points of smooth convex-concave functions

min max f(z,y)

Mirror-prox [Nemirovski '04]. repeat for t=1,2
» O(1/t) convergence |

| w, i= prox., (1F(21))
» O(1/t%) convergence if M c S. .

: ' Ziil 1= pI'OXz, (ﬂ/tF(wt))
> chth))e used if we can project onto output

t t
» can remove the tuning requirement Z = (Y %) Y v,
by an adaptive line search =1 r=1
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Structured optimization with VGF

Preprocessing: Reduced Form

Jopt = Xmm max (X,D(G)) — L(G) + Atr(XMXT)
‘Geg

» D determined by the sampled data and the estimation method (regression,
classification, etc).

» VGF's variational form can allow reducing the problem; i.e. solve the
problem in smaller dimension.
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Structured optimization with VGF

Experiment: Text Categorization

Experiment. Text Categorization for Reuters corpus volume 1: archive of
manually categorized news stories. A part of the categories hierarchy:

__corporate

__funding\" ’ ownership changes B " markets

acquisition asset transfer domestic markets privatization market share

X, &

N
minimize 5 Z £ + AQ(X)
s=1

subject to X y.—X;ys=1—&, VjeS(),Vie A*(2),¥s€{1,...,N}
6320, Vse{l,...,N}

where y, € R" are the sampleg, and z; € {1,...,m} are the labels, s =1,...,N.
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Structured optimization with VGF

Experiment: Text Categorization

objective function convergence rate

Subgradient Method non-smooth, convex O(1/4/1)

Regularized Dual Averaging non-smooth, strongly cvx (o) O(In(t)/ot)

Mirror-prox smooth var. form, convex O(1/t)

Mirror-prox smooth var. form, strongly convex O(1/t°)

FlatMult HierMult Transfer Treeloss Orthogonal Transfer
21.39(+0.29) 21.41(+0.29) 21.91(+0.31) 26.32(+0.39) 17.46(+0.74)

Prediction Error on Test Data

Variational Gram Functions




Structured optimization with VGF

Summary, future work

VGFs: functions of Gram matrix, defined via weight set M
unify special cases; lead to new functions

convex analysis: conjugate, subdifferential, prox

efficient algorithms

future work:

» design M for different applications

» other applications:

multitask learning (with clustered or diverse sets of tasks); disjoint visial
features (vision);. ..

Reference: A. Jalali, L. Xiao, M. Fazel, “Variational Gram Functions: Convex Analysis
and Optimization”, from website: faculty/washington.edu/mfazel

K
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Convex Analysis of VGFs

Conjugate Function

Conjugate function of Q(X) = maxsen tr(XMXT) is

Q*(Y) =: \ijni{ {tr(YM'Y") : range(Y") range(M)}
MeEJ

. M YT
it (@ [ w0 wen)

and is “semidefinite representable”

the dual norm (if M's invertible):

e = . —12 -
20°(X) = inf | XM~V

special case.

» withM={M: oI <M <1, tr(M) = «}, gives cluster norm defined by
[Jacob, Bach,Vert '08]; can be interpreted as a convex relaxation of k-means.

R
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