On the O(1/k) Convergence of Asynchronous Distributed Alternating Direction Method of Multipliers

Ermin Wei

Asu Ozdaglar

Electrical Engineering and Computer Science Department Northwestern University and MIT

> SIAM CSE 15 Salt Lake City March 15, 2015

Motivation

New computer paradigm: large scale networks, local information collection and processing power

Argonne National Lab computer cluster

Parameter estimation in sensor networks

Multi-agent cooperative control and coordination

Smart grid state estimation systems

Distributed Multi-agent Optimization

- Connected undirected network: {1,..., M} nodes (agents, processors).
- Cooperatively solve

$$\min_{x} \sum_{i=1}^{M} f_{i}(x)$$
s.t. $x \in \mathbb{R}^{n}$,

Machine Learning Example

- A network of 3 sensors, data collection: temperature t, electricity demand d.
- System goal: a 3rd-degree polynomial electricity demand model:

$$d(t) = x_3 t^3 + x_2 t^2 + x_1 t + x_0.$$

System objective:

$$\min_{x} \quad \sum_{i=1}^{3} ||A'_{i}x - d_{i}||_{2}^{2}.$$

where $A_i = [1, t_i, t_i^2, t_i^3]'$ at input data t_i .

Machine Learning General Set-up

System objective: train weight vector x to

$$\min_{x} \sum_{i=1}^{M-1} L_i(x) + p(x),$$

for some loss function L (on the prediction error) and penalty function p (on the complexity of the model).

Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

$$\min_{x} \sum_{i=1}^{M-1} ||A'_{i}x - b_{i}||_{2}^{2} + \lambda ||x||_{1}.$$

 Other examples from ML estimation, low rank matrix completion, image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel, Parrilo 10], [Steidl, Teuber, 10]

Distributed Multi-agent Optimization

- Connected undirected network: {1,..., M} nodes (agents).
- Cooperatively solve

$$\min_{x} \sum_{i=1}^{M} f_i(x)$$
s.t. $x \in \mathbb{R}^n$,

 $f_i(x): \mathbb{R}^n \to \mathbb{R}$ is a convex (possibly nonsmooth) function, known only to agent i.

 Distributed algorithm: each agent performing computations locally and communicating only to neighbors.

This Talk

 We present an asynchronous distributed ADMM-type algorithms for multi-agent optimization.

	Synchronous	Asynchronous
Centralized	O(1/k) [He, Yuan 11]1	×
Distributed	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$

¹Under special assumptions (strong convexity, Lipschitz gradient), ADMM converges very fast [Goldfarb et al. 10], [Deng, Yin 12], [Hong, Luo 12].

Standard ADMM

 Standard ADMM solves a separable problem, where decision variable decomposes into two (linearly coupled) variables:

$$\min_{x,y} f(x) + g(y)$$

s.t. $Ax + By = c$.

Consider an Augmented Lagrangian function:

$$L_{\beta}(x,y,p) = f(x) + g(y) - p'(Ax + By - c) + \frac{\beta}{2} ||Ax + By - c||_{2}^{2},$$

for some positive scalar β , dual variable p.

Standard ADMM

More specifically, updates are as follows:

$$x^{k+1} = \operatorname{argmin}_{x} L_{\beta}(x, y^{k}, p^{k}),$$

 $y^{k+1} = \operatorname{argmin}_{y} L_{\beta}(x^{k+1}, y, p^{k}),$
 $p^{k+1} = p^{k} - \beta(Ax^{k+1} - By^{k+1} - c).$

- Each minimization involves (quadratic perturbations of) functions f and g separately.
 - In many applications, these minimizations are easy (quadratic minimization, L₁ minimization, which arises in Huber fitting, basis pursuit, LASSO, total variation denoising). [Boyd et al. 10]

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

$$\min_{x_1,x_2} f_1(x_1) + f_2(x_2)$$

s.t. $x_1 = x_2$.

ADMM applied to this problem yields:

•
$$x_1^{k+1} = \operatorname{argmin}_{x_1} f_1(x_1) + f_2(x_2^k) - (p_{12}^k)'(x_1 - x_2^k) + \frac{\beta}{2} ||x_1 - x_2^k||_2^2$$

Special Case Study: 2-agent Optimization Problem

Multi-agent optimization problem with two agents:

$$\min_{x_1, x_2} f_1(x_1) + f_2(x_2)$$

s.t. $x_1 = x_2$.

ADMM applied to this problem yields:

•
$$p_{12}^{k+1} = p_{12}^k - \beta(x_1^{k+1} - x_2^{k+1}).$$

Multi-agent Optimization Problem: Reformulation

- Reformulate to remove ordering: technique from [Bertsekas, Tsitsiklis 89].
- Rewrite each constraint $x_i x_j = 0$ for edge e = (i, j) as

$$x_i = z_{ij}, \quad x_j = z_{ji},$$

 $z_{ij} = z_{ji}.$

Augmented Lagrangian

$$L_{\beta}(x,z,p) = f_{1}(x_{1}) + f_{2}(x_{2}) + p_{12}(x_{1} - z_{12}) + p_{21}(x_{2} - z_{21}) + \frac{\beta}{2} \left((x_{1} - z_{12})^{2} + (x_{2} - z_{21})^{2} \right).$$

• Constraint set Z: $\{z_{ij} = z_{ji}\}$.

Multi-agent Asynchronous ADMM - Illustration

$$\min_{x,z} \sum_{i=1}^{M} f_i(x_i)$$
s.t. $x_i = z_{ij}, \quad x_j = z_{ji} \quad \text{for } (i,j) \in E,$
 $z \in Z.$

- Set $Z = \{z \mid z_{ij} = z_{ji} \text{ for all } e = (i, j)\}.$
- We associate a Poisson local clock with each edge.
- If the clock corresponding to edge (i, j) ticks: increase iteration count by 1, the agents i, j and edge (i, j) become active.
- No adjustments for activation frequencies necessary.

Asynchronous ADMM Algorithm

At time step k, an edge e = (i, j) and its end points become active.

a For q = i, j, the active primal variable x_q is updated as

$$x_q^{k+1} \in \operatorname*{argmin}_{x_q} f_q(x_q) - \sum_{t \in \mathcal{N}(q)} (p_{qt}^k)' x_q + \frac{\beta}{2} \left\| \sum_{t \in \mathcal{N}(q)} x_q - z_{qt}^k \right\|^2.$$

The value x_q^{k+1} is sent to all active neighbors.

b Active agents i and j compute z_{ij}^{k+1} and z_{ji}^{k+1} as the components of z^{k+1}

$$z^{k+1} \in \operatorname*{argmin}_{z \in Z} - (p^k)'z + \frac{\beta}{2} \left\| \sum_{i,j} x_i^{k+1} - z_{ij} \right\|^2.$$

c Agent i and j individually update active dual variable as

$$p_{ij}^{k+1} = p_{ij}^k + \frac{\beta}{2} (x_i^{k+1} - x_j^{k+1});$$

$$p_{ji}^{k+1} = p_{ji}^k + \frac{\beta}{2} (x_j^{k+1} - x_i^{k+1}).$$

Variables z_{qt} and p_{qt} are used whenever node q is active, but only updated when both q and t are active.

Convergence

Theorem

Under the assumption that each edge updates infinitely often, the iterates generated by the asynchronous ADMM algorithm converge to a primal-dual optimal solution almost surely.

Theorem

The following hold at each iteration k:

$$\left|\left|\mathbb{E}(F(\bar{x}^k)) - F(x^*)\right|\right| \leq \frac{\alpha}{k},$$

where α is a constant and $\bar{x}^k = \frac{\sum_{l=0}^{k-1} x^l}{k}$, $\bar{z}^k = \frac{\sum_{l=0}^{k-1} z^l}{k}$ are the ergotic average.

A similar rate result holds for the constraint violation $||\mathbb{E}(D\bar{x}(k) + H\bar{z}(k))||$.

Dependence of Convergence Rate on Network

Theorem

With initialization $x^0 = 0$, $z^0 = 0$ and $p^0 = 0$ and all edges active at every iterate, we have

$$|F(\bar{x}^k) - F(x^*)| \le \frac{N\beta ||x^*||^2}{Mk} + \frac{4C^2}{k\beta \rho_2(L(G))}.$$

$$||D\bar{x}(k) - \bar{z}(k)|| \leq \frac{1}{2k\beta} \left(\frac{C\sqrt{2}}{\sqrt{\rho_2(L(G))}} + 1 \right)^2 + \frac{N\beta ||x^*||^2}{Mk},$$

where N is the number of edges, Dx - z = 0 is the equality constraints, $\rho_2(L(G))$ is the second smallest positive eigenvalue of the Laplacian matrix L(G) of the underlying graph. ²

 Dependence on the algebraic connectivity of the graph: the more connected it is, the better the performance.

$$^{2}L(G)$$
 is a matrix with elements $[L(G)]_{ij} = \begin{cases} degree(i) & i = j, \\ -1 & (i,j) \in E. \end{cases}$

Simulations

	Number of Iterations to 10% of O⊕timal Function Value	Number of Iterations to Feasibility Violation < 0.1
Asynchronous ADMM	65	336
Asynchronous Gossip	1100	3252

Conclusions and Future Work

• For general convex problems, we developed an asynchronous distributed ADMM algorithms, which converges at the best known rate O(1/k).

	Synchronous	Asynchronous
Centralized	O(1/k)	×
Distributed	O(1/k)	O(1/k)

- Simulation results illustrate the superior performance of ADMM (even for network topologies with slow mixing).
- Ongoing and Future Work:
 - Analyze graph topology effects on asynchronous ADMM algorithm performance.
 - Extension to directed graph, communication and computation noise.
 - ADMM type algorithm for time-varying graph topology.
 - Effect of global constraints.