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Motivation

New computer paradigm: large scale networks, local information collection and
processing power

Parameter estimation

. Smart grid state
in sensor networks

estimation systems

Multi-agent
cooperative control
and coordination

Argonne National Lab
computer cluster



Distributed Multi-agent Optimization

@ Connected undirected network: {1.,..., M} nodes (agents, processors).

@ Cooperatively solve

M

min z fi(x)
: 4
x € R",



Machine Learning Example

@ A network of 3 sensors, data collection: temperature t, electricity demand d.

@ System goal: a 3rd-degree
polynomial electricity

Least square fil with polynomial max degree 3
demand model: v ‘ =

ao

28}

d(t) = xst>+xat2+x1t+x0. |
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@ System objective:

Elactinciy Damand
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. Tamperature
input data t;.




Machine Learning General Set-up

@ System objective: train weight vector x to

M —1

min E Li(x) + plx),

for some loss function L (on the prediction error) and penalty function p (on
the complexity of the model).

o Example: Least-Absolute Shrinkage and Selection Operator (LASSO):

M-—1

. 2
min 3" ([ — b3 + Allxll, -
i=1
o Other examples fr-:::-m ML estlmattnn 1ow rank matrlx cr.:rmpletmn

image recovery [Schizas, Ribeiro, Giannakis 08], [Recht, Fazel

l Steidl| '-!|'---! '_'._



Distributed Multi-agent Optimization

@ Connected undirected network: {1,.... M} nodes (agents).

@ Cooperatively solve

J"-‘ ,f

: - 1::-_,,5 ol Toeiny i)
min Z fi(x) f f — >l :
=1

J . |
i I|l
s.t. xER". /

fi(x) : R" —+ R is a convex /
(possibly nonsmooth) function,
known only to agent /.

f”.'{i":_....,.]"”}‘

@ Distributed algorithm: each agent performing computations locally and
communicating only to neighbors.



This Talk

@ We present an asynchronous distributed ADMM-type algorithms for
multi-agent optimization.

Synchronous - Asynchronous
Centralized | O(1/k) [He, Yuan 11]* | X
Distributed O(1/vk) - O(1/Vk)

'Under special assumptions (strong convemty Llpschltz gradient), ADMM converges very
fast [Goldfarb et al. 10 I':'I Yin | H e i




Standard ADMM

@ Standard ADMM solves a separable problem, where decision variable
decomposes into two (linearly coupled) variables:

min f(x)+ g(y)

s.t. Ax+ By =c.

@ Consider an Augmented Lagrangian function:
r "j 2
Lo(x,y.p) = f(x) +gly) — p'(Ax + By — c) + S ||Ax + By — cll;,

for some positive scalar /3, dual variable p.




Standard ADMM

Standard ADMM

More specifically, updates are as follows:

= argmin, Lg(x.y", p¥).

y**t =argmin, Lg(x""". y.p").
pk+l = pﬁf - .I-E(Axh':—l S B_'r"k+l - C).

@ Each minimization involves (quadratic perturbations of) functions f and g
separately.

o In many applications, these minimizations are easy (quadratic
minimization, L; minimization, which arises in Huber fitting, basis
pursuit, LASSO, total variation denoising). |E '
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Standard ADMM

Special Case Study: 2-agent Optimization Problem

@ Multi-agent optimization problem with two agents:

Miny x, hi(x1) + f(x)
5.T. X1 = Xo.

@ ADMM applied to this problem vyields:

.T'i""' L I;;

@ x{‘“ = argmin fi(xy) + fg(x{f) — {p{‘z "(x] — xé‘

)+ 2 || — x|
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Standard ADMM

Special Case Study: 2-agent Optimization Problem

@ Multi-agent optimization problem with two agents:

MiNg e  f(x1) + fa(x2)

s.1L. X1 = M
@ ADMM applied to this problem vyields:
i o
(i3
o Pyt = phh — Bl — ™).



Asynchronous & DMBM

Multi-agent Optimization Problem: Reformulation

@ Reformulate to remove ordering: technique from |Eerf

@ Rewrite each constraint x; — x; = 0 for edge e = (i, /) as

T1 = Z19 a2 = 2IM

Xij = 2',]. Xj — Eﬁ..

1 2
z&. — zjl =] =l

@ Augmented Lagrangian

La(x,z,p) = A(x1) + fa(x2) + pr2(x1 — 212) + p21(x2 — z21)

-+

+ ? (1 — 212)* +Hx2 — za1)?) .

@ Constraint set Z: {z; = zj;}.
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Asynchronous ADMM

Multi-agent Asynchronous ADMM - lllustration

T
min Z:‘ fi(xi) 1
==,
K
s.t. Xi=2%5 X=2z forli,j)ekE, 5
5
ze ”Z. pk+1 /\ I§+1
y «
2 @ s

@ Set 7 —{z|zz; =z torall &= {i,j)}.
@ We associate a Poisson local clock with each edge.

@ If the clock corresponding to edge (i, /) ticks: increase iteration count by 1,
the agents /, j and edge (/.j) become active.

@ No adjustments for activation frequencies necessary.
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Asynchronous ADMM Algorithm

At time step k, an edge e = (i,j) and its end points become active.

a For g = i,j, the active primal variable x; is updated as

3 .
k+1 . k v 7 3 k
Xq € argmin fg(Xxg) — Z (Par) Xq + 7 Z Xqg — Zgr
*q teN{q) teN(g)
The value xS is sent to all active neighbors.
b Active agents | and j compute z““ and .1:,-‘}’+1 as the components of z
. | ]

+H . kyr k41
z""" € argmin —(p") z 4 | E X; ' — 2Zj
zeZ ' i

k+1

sl

3

c Agent | and j individually update active dual variable as

k+1 -‘j k+1 k+1y.
Pu = Pr 7 ( X; I_f }r
k+1 k .-'j k+1 k+1]

Pii = Pji T 5[?‘} — X

Variables z4; and pg: are used whenever node g is active, but only updated when both g

and t are active.
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Convergence Analysis

Convergence

Theorem

Under the assumption that each edge updates infinitely often, the iterates
generated by the asynchronous ADMM algorithm converge to a primal-dual
optimal solution almost surely.

Theorem
The following hold at each iteration k:

=

E(F(x%)) — F(x*)|| < P

: " k—1 1 N k—1 1 '
where a is a constant and x* = Z%f— ¢ = E—fjf— are the ergotic average.

a

A similar rate result holds for the constraint violation ||E(DXx(k) + Hz(k))]||.
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Convergence Analysis

Dependence of Convergence Rate on Network

Theorem

With initialization x° = 0, z° = 0 and p® = 0 and all edges active at every iterate, we |
have f

- 3 NE ||x* |2 4C?
- < -
|F(x7) = F(x")| < Mk iz ki3pa( LI G))

2 .
IDR(K) — Z(k)|| < = ( Cv2 +1) o NBIXE

where N is the number of edges, Dx — z = 0 is the equality constraints, p2(L(G)) is the
second smallest positive eigenvalue of the Laplacian matrix L(G) of the underlying
graph. ¥

@ Dependence on the algebraic connectivity of the graph: the more connected it is,
the better the performance.

degree(/)

*L(G) is a matrix with elements [L(G)]; = { h E,:j
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Simulations

1 IF (x{T))—F(x WAF(x ) for Sample Graph > Feasibility Viciation for Sampie Graph
= Asynichronous ADMM E | ===AsSynchionous ADMM

= w=em ASYNCIIONOUS GOSSID . [:==-Asynchionous Gossip) |
%M ] “1 1
2 % 2k -
206 :
S > 15t
k=] ] =
204 ‘g
-] 1 _1
- W
g
50
5
il | i B o e R e D

1000 2000 3000 4000
Iteration

Number of Iterations
to 10% of Oftimal

Function Value

Number of lterations to
Feasibility Violation < 0.1

Asynchronous ADMM

65

336

Asynchronous Gossip

1100

3252

18



Conclusions and Future Work

@ For general convex problems, we developed an asynchronous distributed
ADMM algorithms, which converges at the best known rate O(1/k).

Synchronous | Asynchronous
Centralized O(1/k) | X
Distributed O(1/k) | O(1/k)

@ Simulation results illustrate the superior performance of ADMM (even for
network topologies with slow mixing).

@ Ongoing and Future Work:

e Analyze graph topology effects on asynchronous ADMM algorithm
performance.

e Extension to directed graph, communication and computation noise.

e ADMM type algorithm for time-varying graph topology.

o Effect of global constraints.
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