THE POCKET GUIDE TO NEUROCRITICAL CARE:

A concise reference for the evaluation and management of neurologic emergencies

by the

Neurocritical Care Society

Marin E. Darsie, MD Asma M. Moheet, MD

THE POCKET GUIDE TO NEUROCRITICAL CARE:

A concise reference for the evaluation and management of neurologic emergencies

by the

Neurocritical Care Society

Marin E. Darsie, MD

Assistant Professor of Emergency Medicine Division of Neurocritical Care University of Wisconsin School of Medicine and Public Health Madison, WI, USA

Asma M. Moheet, MD

Assistant Professor of Neurology and Neurosurgery Associate Director, Neuro Critical Care Unit Cedars-Sinai Medical Center Los Angeles, CA, USA

For our families, our patients, and their families. Thank you for teaching us.

Copyright © 2017 by Neurocritical Care Society

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the author.

Disclaimer:

This content was developed by the Neurocritical Care Society (NCS) and is intended to be used as an educational tool and should not be construed as medical advice. The editors and authors have made every effort to present accurate and complete information at the time of publication, however new information on any of the topics contained in this book may emerge. The authors, editors, publisher, or any party involved in the production of this work cannot guarantee that all data presented herein is complete or accurate, and these parties are not responsible for any omissions or errors in this text or liable for outcomes due to use of this text. Note that this includes drug information. The information in this text cannot replace independent evaluation by a qualified medical professional. Except when otherwise cited, the views expressed by the authors and editors are their own and are not necessarily the views of any institution with which the authors or editors are affiliated. Practitioners should refer to institutional policies and practices where appropriate. References have been provided by chapter authors at the end of each chapter. NCS respects the intellectual property rights of others and prohibits users from reproducing content that violates another party's intellectual property rights. If you believe that any material infringes upon any copyright which you own or control, you may send a written notification of such infringement to NCS.

ISBN-13: 978-1-943909-00-1

Library of Congress Control Number: 2017951923

Cover Design and Original Graphics by Daniel Walsh

Printed in the United States of America

PREFACE

While staffing the Neurocritical Care Society booth at the 2016 SCCM Conference, members of the NCS Resident/Fellow Committee realized there was demand for a quick reference guide to neurocritical care when person after person inquired if we had any for sale. Over the next 15 months, the Resident/Fellow Committee developed a vision which has become The Pocket Guide to Neurocritical Care: A concise reference for the evaluation and management of neurologic emergencies.

Over 40 authors have contributed to this project. Residents, fellows, and APPs were recruited as junior authors to provide authorship opportunities for trainees at the beginning of their careers. They were paired with established leaders in the field of neurocritical care who served as the senior authors for each chapter.

The aim of this book was to create a resource for trainees and other members of the NCCU multidisciplinary team of varying backgrounds on bedside management and pearls for a variety of neurocritical care conditions. With guidance from the NCS Educational Products Committee, seventeen high-yield topics were identified which include the most commonly encountered neurologic emergencies and basics of critical care medicine explained through the neurocritical care perspective. This book is not intended to be a definitive reference text, rather it aims to arm the reader with a grasp of a neurocritical care topic in less than 15 minutes.

ACKNOWLEDGEMENTS

This project would not have been possible without the time, efforts and vision of all the members of the NCS Resident/Fellow Committee, specifically Sherri Braksick, Tobias Kulik, Deepa Malaiyandi, and Anand Venkatraman for their assistance with editing.

We would like to recognize the members of the NCS Educational Products Committee for their oversight and support in developing this project, as well as their time spent editing and reviewing its content for accuracy.

We would like to thank Becca Stickney and Sara Memmen for all their help in launching the first edition of <u>The Pocket Guide to Neurocritical Care</u>.

Finally, we would like to thank our families. We are the best versions of ourselves because of your love and support.

Marin Darsie and Asma Moheet August 2017

<u>ABBREVIATIONS</u>		ВСх	blood culture
		BBB	blood-brain barrier
+	positive	BID	twice daily
↓	decreased	ВМР	basic metabolic panel
↑	increased	ВР	blood pressure
AAN	American Academy of Neurology	BTF	Brain Trauma Foundation
Ab	antibody	BSAS	Bedside Shivering Assessment Scale
ABCs	airway, breathing, circulation	С	Celsius
ABG	arterial blood gas	Ca ²⁺	calcium
AC	assist control	CABG	coronary artery bypass graft
ACA	anterior cerebral artery	CAS	carotid artery stenting
ACh	acetylcholine	СВС	complete blood count
AChEI	acetylcholinesterase	CBF	cerebral blood flow
AChR	inhibitor(s) acetylcholinesterase receptor(s)	CCM	cerebral cavernous malformation
ACEI	angiotensin-converting	CEA	carotid endarterectomy
ACEI	enzyme inhibitor(s)	CHF	congestive heart failure
ACLS	Advanced Cardiac Life Support	CIDP	chronic inflammatory demyelinating polyneuropathy
AComm	anterior communicating artery	COPD	chronic obstructive pulmonary
AED	anti-epileptic drug		disease
AF	atrial fibrillation	CIM	critical illness myopathy
AG	anion gap	CKD	chronic kidney disease
AHA	American Heart Association	CMP	comprehensive metabolic panel
AICA	anterior inferior cerebellar artery	CMRO ₂	cerebral metabolic rate of oxygen
AIS	acute ischemic stroke	CMV	cytomegalovirus
ALS	amyotrophic lateral sclerosis	CN	cranial nerve
AKA	also known as	CNS	central nervous system
ARDS	acute respiratory distress syndrome	СО	cardiac output
aSAH	aneurysmal subarachnoid	CPP	cerebral perfusion pressure
	hemorrhage	CPR	cardiopulmonary resuscitation
ATLS	Advanced Trauma Life	CrCl	creatinine clearance
41/5-5	Support	CSE	convulsive status epilepticus
AVDO ₂	arterio-venous difference of oxygen consumption	CSF	cerebrospinal fluid
AVM	arteriovenous malformation	CSWS	cerebral salt wasting syndrome

СТ	computarized tomography	EVD	external ventricular drain
CTA	computerized tomography	FFP	
CTV	CT angiography		fresh frozen plasma Full Outline of
	CT venogram	FOUR	Unresponsiveness
CVAD CVR	central venous access device	FVC	forced vital capacity
CVR	cerebral vascular resistance	GBS	Guillain-Barré syndrome
D	chest x-ray	GCS	Glasgow Coma Scale
DAI	day	GI	gastrointestinal
dAVF	diffuse axonal injury	GOSE	Glasgow Outcome Scale-
	dural arteriovenous fistula		Extended
DBP	diastolic blood pressure	GTC	generalized tonic-clonic
DCD	donation after circulatory death	Н	hour
DCI	delayed cerebral ischemia	HCG	human chorionic gonadotropin
DH	decompressive	HD	hemodialysis
	hemicraniectomy	Hgb	hemoglobin
DI	diabetes insipidus	HIT	heparin-induced
DKA	diabetic ketoacidosis		thrombocytopenia
DNI	do not intubate	НОВ	head of bed
DNR	do not resuscitate	HSV	Herpes simplex virus
DSA	digital subtraction angiography	HTLV-1	Human T-lymphotropic virus type 1
DTR	deep tendon reflexes	HTN	hypertension
DVT	deep vein thrombosis	HTS	hypertonic saline
EBV	Epstein-Barr virus	IBW	ideal body weight
ECMO	extracorporeal membrane	ICA	internal carotid artery
	oxygenation	ICH	intracerebral hemorrhage
ED	Emergency Department	ICP	intracranial pressure
EDH	epidural hematoma	ICU	intensive care unit
EEG	electroencephalogram	lgA	immunoglobulin A
EKG	electrocardiogram	IM	intramuscular
EMG	electromyography	IV	intravenous
EN	enteral nutrition	IVC	inferior vena cava
ENLS	Emergency Neurologic Life	IVF	intravenous fluids
FNIT	Support	IVH	intraventricular hemorrhage
ENT	ear/nose/throat or otolaryngology	IVIg	intravenous immunoglobulin
ЕОМ	extraocular muscles	IV tPA	intravenous tissue
ETT	endotracheal tube	KCI	plasminogen activator
		KCL	potassium chloride

LE	lower extremity	og	orogastric
LFTs	liver function tests	ООВ	out of bed
LKWT	last known well time	OSA	obstructive sleep apnea
LOS	length of stay	OSM	osmolar
LP MAP	lumbar puncture mean arterial pressure	ОТ	occupational therapy or therapist
MC	myasthenic crisis	$P_{bt}O_2$	brain tissue oxygen tension
MCA	middle cerebral artery	PCA	posterior cerebral artery
MCS	minimally conscious state	PComm	posterior communicating
MEP	maximal expiratory pressure		artery
MG	myasthenia gravis	PE	pulmonary embolus
мн	malignant hyperthermia	PEEP	positive end expiratory pressure
MHS	malignant hemispheric stroke	PEG	percutaneous endoscopic
MI	myocardial infarction		gastrostomy
Min	minute	PFO	patent foramen ovale
mL	milliliter	PICA	posterior inferior cerebellar artery
MOA	mechanism of action	PIV	peripheral intravenous line
MRI	magnetic resonance imaging	PLEX	plasmapheresis
mRS	modified Rankin Scale	Pplat	plateau pressure
MV	mechanical ventilation	PRN	pro re nata, as needed
NCCU	Neuro Critical Care Unit	PRVC	pressure regulated volume
NCS	nerve conduction study OR Neurocritical Care Society		control
NOOF	·	PT	physical therapy or therapist
NCSE	non-convulsive status epilepticus	PVS	persistent vegetative state
NG	nasogastric	QID	four times daily
NIF	negative inspiratory force	QOD	every other day
NIPPV	noninvasive positive pressure	RA	rheumatoid arthritis
	ventilation	RASS	Richmond Agitation and Sedation Scale
NM	neuromuscular	R/O	rule out
NMBA	neuromuscular blockade agent	RCT	randomized control trial
NMJ	neuromuscular junction	RN	registered nurse
NOAC	novel oral anticoagulant	ROM	range of motion
NS	normal saline	ROSC	return of spontaneous
NSAID	nonsteroidal anti-inflammatory drugs	RR	circulation respiratory rate
O ₂	oxygen	RSI	rapid sequence intubation

RT	respiratory therapy or therapist	TCD	transcranial doppler ultrasound
RTA	renal tubular acidosis	TH	therapeutic hypothermia
RVR	rapid ventricular response	TIA	transient ischemic attach
SAH	subarachnoid hemorrhage	TMJ	temporomandibular joint
SBP	systolic blood pressure	TMP-SM	X trimethoprim- sulfamethoxazole
SC	subcutaneous		
SCA	superior cerebellar artery	tPA	tissue plasminogen activator
SCD	sequential compression device	TTM	targeted temperature management
SDH	subdural hematoma	U	units
Se	sensitivity	UA	urinalysis
SE	status epilepticus	UCx	urine culture
Sec	second	UE	upper extremity
SIADH	syndrome of inappropriate	UH	unfractionated heparin
	antidiuretic hormone secretion	UMN	upper motor neuron
SLE	systemic lupus erythematosus	UTI	urinary tract infection
s/p	status post	VF	ventricular fibrillation
Sp	specificity	\mathbf{V}_{T}	tidal volume
SpO ₂	peripheral capillary oxygen	VT	ventricular tachycardia
	saturation	VTE	venous thromboembolism
SSEPs	somatosensory evoked potentials	VZV	Varicella zoster virus
SSRI	selective serotonin reuptake inhibitor	w/	with
		WFNS	World Federation of
SSS	sick sinus syndrome		Neurological Surgeons
ST	speech therapy or therapist	WNV	West Nile virus
тв	tuberculosis	w/o	without

yo

TBI

traumatic brain injury

years old

CONTENTS

1.	COMA EXAM COMPONENTS 1 Anand Venkatraman, MD Edward Manno, MD, MS
2.	ACUTE SPINAL CORD INJURY 11 Ribal Bassil, MD Shola Aluko, MD Deborah M. Stein, MD, MPH, FACS, FCCM
3.	NEUROMUSCULAR EMERGENCIES 22 Marin E. Darsie, MD J. Dedrick Jordan, MD, PhD
4.	STATUS EPILEPTICUS 32 Anh Nguyen, MD Alexis Steinberg, MD Jan Claassen, MD, PhD, FNCS
5.	MENINGITIS & ENCEPHALITIS 44 Sirisha Sanamandra, MBBS Barnett Nathan, MD
6.	NEUROLOGIC CARE AFTER CARDIAC ARREST55 Christian Hernandez, MD Romergryko Geocadin, MD, FNCS
7.	ELEVATED ICP & HYDROCEPHALUS 62 Deepa Malaiyandi, MD Lori Shutter, MD, FNCS, FCCM
8.	SUBARACHNOID HEMORRHAGE 73 Jennifer A. Kim, MD, PhD Ashutosh Mahapatra, MD Stephan A. Mayer, MD, FCCM
9.	INTRACEREBRAL HEMORRHAGE 88 Tobias Kulik, MD J. Claude Hemphill III, MD, FNCS
10.	ISCHEMIC STROKE 97 Winnie Lau, MD Kassi Kronfeld, MD Wade Smith, MD, PhD, FNCS

11.	TRAUMATIC BRAIN INJURY Chitra Sivasankar, MD Catherine Albin, MD Kristine O'Phelan, MD	112
12.	BRAIN DEATH IN ADULT'S Sherri A. Braksick, MD Eelco F. M. Wijdicks, MD, FNCS	124
13.	MULTIMODAL MONITORING Kara R. Melmed, MD Peter Le Roux, MD	132
14.	HIGH-YIELD MEDICATIONS Yasmin Ali O'Keefe, MD Feras Akbik, MD, PhD Gretchen M. Brophy, PharmD, BCPS, FCCP, FCCM, FNCS	143
15.	MECHANICAL VENTILATION Benedict Tan, MD Paul Nyquist, MD, MPH Asma M. Moheet, MD	158
16.	ACID-BASE & ELECTROLYTE DISTURBANCES. Benedict Tan, MD Jose I. Suarez, MD, FNCS	174
17.	MULTIDISCIPLINARY CARE Megan A. Brissie, DNP, RN, ACNP-BC, CEN Helen M. Nester, MSN, RN, ACNP-BC Mary Kay Bader, MSN, RN, CCNS, FNCS, FAHA	192

CHAPTER 1

COMPONENTS OF THE COMA EXAM

Anand Venkatraman & Edward Manno

The examination of a comatose patient is one of the most important responsibilities in the care of neurocritically ill patients. We will describe key components of the coma exam and review common findings.

DISORDERS OF CONSCIOUSNESS

Consciousness is comprised of 2 components: arousal and awareness. Two connected anatomic pathways coordinate consciousness: the ascending reticular activating system within the brainstem, and arousal centers in the bilateral thalami which project diffusely to cortical neurons. Impairment of awareness can lead to a spectrum of disorders, which include minimally conscious state (MCS) and vegetative states. Coma, on the other hand, is caused by impaired arousal which leads to impaired awareness. Consciousness is not an all-or-nothing phenomenon, and gradations do exist. Newer technologies, such as functional MRI, are beginning to provide the ability to image and interpret brain processing in a more advanced and high-resolution fashion. This is shedding light on the gradations of consciousness and may alter how we evaluate and treat patients that may be "functionally locked-in" or have Unresponsive Wakefulness Syndrome, but the bedside neurologic exam remains a highly valuable standard assessment tool for all clinicians.

DIFFERENTIAL DIAGNOSIS

It is important to differentiate coma from other disorders of consciousness, including vegetative state, minimally conscious state (MCS), and locked-in syndrome (Table 1). The prognosis of disorders of consciousness varies widely, and depends on clinical factors, cause of brain injury, and the duration of the consciousness impairment. For patients with persistent vegetative state (PVS, defined as vegetative state with duration of > 1 month), the prognosis is poorest. Some patients with MCS will show recovery over time. Locked-in syndrome usually results from a lesion that interrupts the descending motor pathways, leaving cognitive function and consciousness intact, but with severe limitations on the patient's ability to interact with the examiner.

POSSIBLE CAUSES OF COMA

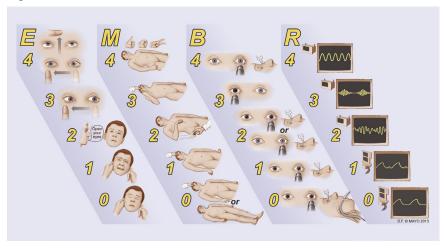
Bihemispheric phenomena, such as medication or drug toxicities, generalized status epilepticus, metabolic disorders and meningoencephalitides can all cause poor responsiveness or coma, with or without focal neurologic findings. Coma may also be caused by brain lesions affecting the thalamus and brainstem, since these contain crucial arousal-supporting neurons. The latter may be associated with focal neurologic findings. It is essential to rule out reversible causes of coma in cases when the etiology is not known (Table 2).

NEUROLOGIC EXAM IN COMA

The initial exam is important for localization and identifying the cause of coma. Serial exams to assess interval change are equally important. Acute neurologic deterioration can signal AIS, ICH, seizure, worsening edema, hydrocephalus, or elevated ICP. Hourly vital sign assessments and neurologic checks are the norm in newly-admitted NCCU patients. In some, such as those admitted after surgical or endovascular procedures, the frequency of assessments may need to be higher.

We recommend the use of standardized scales to assess disorders of consciousness. The best known is the Glasgow Coma Scale (GCS), of which the arbitrary definition of coma is GCS 8 or less (E2V2M4). See Table 3 for reference.

Limitations of GCS:


- Can miss locked-in states and subtle changes in consciousness
- Does not assess pupillary and other brainstem reflexes
- Patients with similar scores may go on to have different outcomes
- Assigns greater weight to motor response than eye opening and verbal responses.
- Intubated patients default to a T score on verbal

The Full Outline of UnResponsiveness (FOUR) score can also be used, and addresses some shortcomings of the GCS:

- Incorporates brainstem function and respiratory pattern, allowing for better localization
- Can help recognize a locked-in state
- Can recognize various stages of herniation

The calculation of the FOUR Score is illustrated in Figure 1, and is additionally described in Table 4.

Figure 1. Calculation of the FOUR Score

SPECIFIC STEPS OF THE COMA EXAM

The patient's mental status, cranial nerve exam, motor exam (including response to noxious stimulus), tone, and reflexes should be assessed.

Cranial Nerves (CN)

Pupils:

- Afferent: CN II, Efferent: CN III
- Observe pupils in low light. Then, shine a light into both pupils alternately and observe for briskness of response. Assess for both direct and consensual light reflexes
- Asymmetric pupils: consider compressive lesions of CN III, such as due to herniation and/or PComm aneurysms
- Unilateral dilated, non-reactive pupil: CN III dysfunction (rule out compression) vs unilateral medication effect or post-surgical pupil
- Nonreactive, dilated pupils: consider severe brainstem damage or medication side effect (Table 5)
- Pinpoint pupils: consider opioid use, pontine hemorrhage, organophosphate poisoning, clonidine overdose, pilocarpine eye drop use, and occasionally mirtazapine and olanzapine
- Sluggish pupils: neuromuscular blocking agents, recent mydriatic administration, or albuterol use

Corneal responses:

- Afferent: CN V, Efferent: CN VII
- Gently hold the patient's eyelids open and drop 1-2 saline drops onto the cornea of each eye

- Cotton swab can also be used but use caution as with repeated testing this can lead to corneal ulceration
- There is a blinking response if this pathway is intact

Blink to threat:

- Afferent: CN II, Efferent: CN VII
- Briskly move your hand into the patient's visual field while holding his/her eyelid open. The patient should blink.

Gaze:

- Hold eyes open and observe direction of gaze in neutral head position
- Eye movements involve coordinated functioning of multiple CN, frontal lobe and brainstem centers
- Gaze deviation also occurs due to involvement of frontal eye fields in each hemisphere: destructive lesions cause ipsilateral gaze deviation, stimulation causes contralateral deviation
- Cortical ischemic stroke patients demonstrate gaze directed towards hemisphere
 of the stroke.
- Seizure patients demonstrate gaze directed away from seizing hemisphere, and may have gaze towards the hemisphere post-ictally
- Brainstem strokes can cause impaired gaze towards the side of the stroke
- Forced downgaze may be seen in thalamic hemorrhages, pineal mass lesions, and severe hydrocephalus
- Bilateral CN VI palsy seen in ↑ ICP

EOMs:

- Innervation of extraocular muscles: Lateral Rectus CN VI, Superior Oblique CN IV, All others CN III
- Fixation and tracking are normal findings
- Fixation: eyes looking at an object and not moving from that position
- Tracking: eyes moving as the object or the examiner moves, to follow them
- Roving eye movements: slow and conjugate to-and-fro movements
- Can be seen in toxic and metabolic conditions where brainstem is intact. Light stages of sleep and lighter coma also cause this
- Nystagmus: fast, beating movements to one side (may indicate ongoing seizures)
 - Other causes: phenytoin toxicity, brain lesions like those seen in stroke or multiple sclerosis, inner ear disorders, and metabolic disorders like thiamine deficiency
 - Down-beating nystagmus may be seen in disorders of the craniocervical junction or cerebellar flocculus
 - Up-beating nystagmus may be seen in cerebellar vermis involvement, and sometimes in lesions of the medulla
 - □ Acute lesions in the pons can cause rapid downward jerking of the eyes with slow return to normal position, called ocular bobbing

Fundoscopy:

Evaluate optic disc and nerve

- Blurring of optic disc margins is indicative of ↑ ICP, but absence of blurring does not automatically indicate normal ICP. Subhyaloid hemorrhages can also be seen with ↑ ICP
 - □ Terson's syndrome: subhyaloid hemorrhage in SAH

Oculocephalic or "doll's eyes" reflex (OCR):

- Afferent: CN VIII and proprioceptive pathways from the cervical level, Efferent: CN III and VI
- Confirm stability of cervical spine, then move head briskly in one direction and then the other with the eyelids held open
- Interpretation of OCR responses in a comatose patient:
 - □ In a normal OCR, eyes move conjugately in the direction opposite to head movement
 - In abnormal OCR, eyes stay in fixed position in the head, implying brainstem disease

Cold calorics (oculovestibular response or OVR):

- Afferent: CN VIII, Efferent: CN III and VI
- Do this if OCRs are absent
- Ensure patency of ear canal and ability of water to reach tympanic membrane
- Instill 50-60 mL of ice cold water into each ear over 1 minute using a syringe
- Test each side individually with several minutes between testing of each
- Normal: slow conjugate deviation towards the irrigated side and fast horizontal nystagmus to the contralateral ear
- Abnormal: no fast nystagmus in patients with cerebral damage but intact brainstem reflexes. No slow deviation and no fast nystagmus implies cerebral and brainstem damage

Gag reflex:

- Afferent: CN IX, Efferent: CN X
- Tested by stimulating the back of the patient's throat with a tongue depressor or suction catheter

Cough reflex:

- Afferent: CN X, Efferent: CN X
- In an intubated patient can be tested by inserting a suction catheter into the patient's ETT or tracheostomy tube

Motor

A normal patient should follow commands. In a comatose patient it is often necessary to administer noxious stimuli centrally, which may include sternal rub or supraorbital ridge pressure. Do not perform supraorbital ridge pressure in the presence of facial fractures. If there is no response to central noxious stimulus, peripheral stimulus (such as application of nailbed pressure) should be performed.

- Patients may localize to the stimulus, withdraw away from the stimulus, flex, extend, or have no response at all. Grimacing may also be observed.
- Spinal reflexes may lead to lower extremity movements even in patients with severe brain damage or brain death (e.g. <u>triple flexion</u> response of hip, knee, and ankle flexion)
- Decorticate posturing: upper extremity flexion and lower extremity extension, typically from a lesion above the red nucleus of the midbrain.
- Decerebrate posturing: upper and lower extremity extension is typically from a lesion below the red nucleus.
- Unilateral or bilateral posturing may be seen based on location of lesion causing it.
- Postanoxic myoclonus is common in patients following cardiac arrest.
 Occasionally it may indicate ongoing seizure activity, EEG is recommended.

Tone and Reflexes

↑ tone, brisk reflexes and upgoing toes are indicative of a lesion in the spinal cord or brain.

- If unilateral, usually indicates a lesion on the opposite side.
- Symmetric hyperreflexia can be normal, especially in young patients, but may also indicate bilateral lesions, especially in the brainstem and spinal cord. In rare instances, symmetric hyperreflexia might indicate conditions like serotonin syndrome.
- People with brisk reflexes usually do not have upgoing toes, so this can be a good way to differentiate pathological cases from physiologic hyperreflexia.
- Brisk reflexes and ↑ tone in lower extremities but not upper extremities are indicative of lesion below the level of the cervical spinal cord.

RESPIRATORY PATTERNS IN COMATOSE PATIENTS

Medication side effects should be ruled out first. Sedating medications tend to cause slow regular breathing, whereas salicylate overdose can cause rapid breathing. In intubated patients, assess synchrony with the ventilator and degree of effort, including actual vs set respiratory rate. Abnormal breathing may manifest more prominently on spontaneous ventilator modes.

Types of abnormal breathing:

- <u>Cheyne-Stokes</u>: oscillation between fast and slow breathing (multiple causes including bilateral hemispheric lesions, heart failure, etc.)
- Apneustic: rapid breathing with inspiratory pauses (pontine lesions)
- <u>Biot's</u>: quick shallow breaths followed by pause after four to five cycles (medullary damage)
- Kussmaul: rapid, deep and labored breaths (metabolic acidosis)