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The prestrained Kirchhoff models

@ Arise as [-limit (Friesecke, James and Miller (02, 06);
Lewicka, P. (10), Lewicka, Ochoa, P. (14))

@ Q CR?and g:Q — Sym?*? Riemannian metric.
Minimize I,(y) = [ |Hy|? in the class of isometric immersions
B2 {y:(g) >R (DY) Dy=g ae. /Q D2y ? < oo}
@ QCR% Q>R
Minimize /s(u) = [, |D?ul? in the class of Monge-Ampére solutions:
MA; :={u:Q—R; detD’u=f ae., /Q|D2u|2 < oo}
@ Main problems:
Existence of admissible mappings/solutions,
(with or without boundary conditions).

Uniqueness and regularity of minimizers/ critical points.
Rigidity or flexibility of isometric mappings/MA solutions.



A tale of two rigidities

@ Rigidity for C*:
@ Monge-Ampeére equation:
f=0 = uis developable.
f>0 = uis locally convex (modulo sign) in €.
@ g =1d (Darboux).
C* isometric immersions of flat 2d domains into R® are developable.
Elliptic g (Hilbert).
Images of C* isometries of elliptic surfaces into R are convex.
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@ C"% solutions, o > 2/3: @ C"* solutions, o0 > 2/3:
Convexity for f > 0. Convexity for elliptic g.
Developability for f = 0. @ We expect:
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We expect: (through convex integration).

Total Flexibility for oc < 1/5.
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@ Convexity for elliptic g.

Theorem (Hornung and Vel¢i¢ (15))

If g is smooth with K(g) >0 and y € 3’3’2, then y is smooth.

@ Theorem: (Sverak (91), Lewicka, Mahadevan and P. (13)) Let f > ¢ > 0
ae.inQCR?andue W,icz Then uis C', locally convex (modulo a
sign change) in © and is an Alexandrov solution.

@ If Vx € Q, y(Q2) admits a tangent plane at y(x), over which it is locally
the graph of a scalar function — Monge-Ampere equation.

@ The normal n € W'2(Q,S?) satisfies n-(n1 xn,) > 0a.e. in Q C R2
Nontrivial result: n € C°.

Theorem: (Vodopyanov and Goldstein-1975) If v € W'2(Q,R?)

satisfies det(Dv) > 0 a.e. in Q C R?, then v € C°.

Theorem (Goldstein, Hajtasz and P. (15))

M, N orientable manifolds of dimension n, N closed and v € W'"(M, N). If
the tangent map does not change orientation a.e. in M, then v € C°(M, N).
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Future projects: W22 rigidity for g

@ Conjecture: lf gis C2and y € 33’2, then yis C'.
@ Observation:
If u e W22(Q) satisfies det(D?u) > —cp a.e. in Q CR?, thenu € C'.

Proof: Write v := Du € W'?(Q,R?), and
Vs(x1,X2) 1= v(x1,X%2) + 8(—x2,X1). Then

det Dvs = det Dv+& > 82 — ¢y > 0

for & large enough.

@ Conjecture: Q =R?, g€ C?> and K(g) = —1. Then 33’500 =0.
2

@ Conjecture: g € C%. 3p >0, Vy € Jg’z, diam(y(2)) > p.
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Flexibility for the Monge-Ampeére equation

@ The very weak Hessian determinant for u € W,Lf:

1
DetD?u = — Ecurlcurl(Du ® Du)

@ (lwaniec (01)) DetD? is not weakly continuous on W2 at vy = 0.

Theorem (Lewicka and P. (15))

Q c R? open, bounded, simply connected and of sufficient regularity.
f=—Agforg e C'(Q). Then for all uy € C°(Q2), and all o. < 1/7, there
exists a sequence of weak solutions uy € C'"%:

DetD? ug="f

converging uniformly to uy. If ug € C' (Q), then uy are uniformly bounded in
C'. Finally DetD? is discontinuous at all u € W'2(Q).
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@ Developability for f = 0.

Theorem (Lewicka and P. (15))

Letu € C"*, a > 2/3. If DetD?u = 0, then u is developable.

@ We need to show that if U C Q is open, then Du(U) C Du(dU). Since
Pogorelov (1956)
C' flat surface with bounded extrinsic curvature is developable.
@ Let v := Du. We showed Yy ¢ v(dU),deg(y, U,v) = 0.
Not enough to conclude. Example by Maly and Martio.
@ Vv = Vx(g = Dug.
Vs(x1,%2) := v(x1,%2) + O(—xX2, X1),
Ve s(X1,X0) i= Ve(Xq,X2) +8(—X2, X1)
@ Then for F € CZ(R?\ v5(aU)):

[ (Fow)s® = [ F(y)dealy,U.vs) dy.
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@ Forally € vs(U)\ vs(U), deg(y, U, vs) > 1.
vs converges uniformly to v.
Forall y € v(U)\ v(dU), deg(y, U, v) = 0.



Thank you for your attention.
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