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Note: Various slides adapted or taken from slides of Bernadette J. Stolz (the first author on most of “my” papers I’ll discuss). 
Most of the original research I am presenting is her work.
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A Few Introductory Resources for 
Topological Data Analysis
Chad Topaz’s awesome introductory article in DSWeb
 https://dsweb.siam.org/The-Magazine/Article/topological-data-analysis
 The most-read DSWeb article of all time

Book: Robert Ghrist, Elementary Applied Topology
 https://www.math.upenn.edu/~ghrist/notes.html

Nina Otter, MAP, Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington, “A Roadmap for
the Computation of Persistent Homology”, submitted, arXiv:1506.08903
Bernadette Stolz [2014], Masters Thesis, University of Oxford, Computational Topology in
Neuroscience
 http://www.math.ucla.edu/~mason/research/Dissertation-stolz2014-Corr.pdf

Chad Giusti, Robert Ghrist, & Danielle S. Bassett [2016], “Two’s Company, Three (or More) is a
Simplex”, Journal of Computational Neuroscience, Vol. 41, No. 1: 1–14
Links to various resources on my Quora answer on TDA
 https://www.quora.com/Applied-Mathematics-What-is-the-background-required-to-study-and-understand-topological-
data-analysis



Introduction and Motivation
Algorithmic methods to study high-dimensional data (from point
clouds, networks, etc.) in a quantitative manner
Examine “shape” of data
Persistent homology
Mathematical formalism for studying topological invariants
 Fast algorithms
 Persistent structures: a way to cope with noise in data
Allows examination of “higher-order” interactions (beyond pairwise) in
data
 A major reason for my interest in these methods (e.g., for networks)



Topological Data Analysis and 
Networks
Typically for weighted networks

In real-world networks, it is hard to extra significant structures (signal) from
insignificant ones (noise).

Sometimes convenient to threshold weights, binarize remaining values, and study
the resulting graph
 Loss of important properties of original graph

Study global network characteristics
 Large-scale network structure, but of a different type from common ones like community structure

 Useful: compare results of TDA approaches to “traditional” network approaches



Persistent Homology: Underlying Idea

Idea: Consider a filtration
 For example: filter by the threshold for going from a weighted network to a binary network, and
only keep (binarized) edges of at least that threshold. 

Study changes in topological structure along filtration by calculating topological
invariants such as Betti numbers



Persistent Homology: Underlying Idea

1. Construct a sequence of embedded graphs from a weighted network.

2. Define simplicial complexes.



Persistent Homology: Weight Rank 
Clique Filtration (WRCF)
(e.g. G. Petri et al., PLOS ONE, 2013)

1. Construct a sequence of embedded graphs from a weighted network.

2. Define k-simplices to be the k-cliques present in the graph.



Example: Dodecagon



Persistence Landscapes
Introduced by P. Bubenik (2015)

This figure in B. J. Stolz et al., Chaos, 2017



Part I: The Topological “Shape” of 
Brexit

B. J. Stolz, H. A. Harrington, & MAP [2016], “The
Topological “Shape” of Brexit”, arXiv:1610.00752



Warmup: Network of EU Countries
Connect two countries with an edge if they are
considered neighbors via a border (either in
Europe or abroad), a bridge or a tunnel.
The edge weight is the later of the two years
that the two countries joined the EU.

Consider WRCF



Example 2: Referendum Voting Data

Construct 2 point clouds
 ‘Remain’ point cloud: coordinates of cities in
voting districts that voted to remain in the EU
 Gibraltar omitted for simplicity

 ‘Leave’ point cloud: coordinates of cities in voting
districts that voted to leave the EU

Construct a Vietoris–Rips filtration
 Choose a sequence {r1, … , rn} of increasing
distances

 In the ith filtration step, we have k-simplices from
unordered (k+1)-tuples with pairwise distance at
most ri





Part II: Functional Networks

B. J. Stolz [2014], Masters Thesis, University of Oxford, Computational Topology in
Neuroscience
 http://www.math.ucla.edu/~mason/research/Dissertation-stolz2014-Corr.pdf

B. J. Stolz, H. A. Harrington, & MAP [2017], “Persistent Homology of Time-
Dependent Functional Networks Constructed from Coupled Time Series”, Chaos,
Vol. 27, No. 4: 047410



Pipeline

E.g. Coupled Kuramoto oscillators (you thought that you could finally avoid them in this session, didn’t you?)

In contrast to using “traditional” 
methods for studying weighted 
networks



What is a Functional Network?
Functional versus Structural Networks
 Example from neuroscience:

 Structural network: nodes = neurons, edges = synapses
 Functional network: nodes = cortical areas, edges = behavioral similarity (quantified by similarity of time series)

 Example from ordinary differential equations:
 Structural network: nodes = oscillators, edges = coupling between oscillators
 Functional network: nodes = oscillators, edges = behavioral similarity (quantified by similarity of time series)

Functional networks are weighted and fully connected (or almost fully connected)
 We can study them using persistent homology
 Can compare results on large-scale structure to other approaches, such as community structure



Example: Coupled Kuramoto
Oscillators



Barcodes and Persistence Landscapes



Kuramoto Data versus Null Models

Simple null model:
 Independently reassign
the order of each
oscillator’s time series
according to a uniform
distribution (i.e., scramble
time independently for
each oscillator)

Fourier null model:
 Generate surrogate data
by scrambling phases in
Fourier space



Example: fMRI Data
Data from D. S. Bassett, N. F. Wymbs, MAP, P. J. 
Mucha, J. M. Carlson, & S. T. Grafton [2011],
“Dynamic Reconfiguration of Human Brain
Networks During Learning”, PNAS, Vol. 118, No. 18:
7641–7646
 Weighted networks from time-series similarity (wavelet
coherence) of neuronal activity of brain regions during
performance of simple motor task

 In the above paper and follow-ups, we studied things like
community structure and core–periphery structure.

 Using persistent homology gives another way to examine
large-scale (“mesoscale”) network structures

 These data also used in D. S. Bassett, MAP, N. F. Wymbs, S. T. 
Grafton, J. M. Carlson, & P. J. Mucha [2013], “Robust
Detection of Dynamic Communities in Networks”, Chaos, Vol. 
23, No. 1: 013141



Differences in Different Days?

Experimental observations on 3 different days
(20 participants)

Right plot: Average persistence landscapes

Landscape peak shifts to the left in later days
 I.e. they are formed by edges with higher weights,
indicating that there is stronger synchronization
between the associated brain regions



Conclusions
Computing persistent homology can give insights into large-scale structure of networks
 Complements network clustering methods, such as detection of mesoscale features like community
structure and core–periphery structure

 Important: going beyond pairwise interactions in networks

Observation: Sometimes relatively short features (e.g. as visualized in short barcodes)
represent meaningful features. (We saw this in both Kuramoto and fMRI data.)
 E.g. strongly synchronized Kuramoto oscillators within the same community of a structure network
 Contrasts with conventional wisdom: longer (i.e. more persistent) features are supposed to be the signals,
and shorter features are usually construed as noise

Our Brexit example was a toy, but it’s worth looking at that kind of data more seriously
using TDA approaches.

Reminder: If you want to get started on PH, look at our “roadmap” paper: Nina Otter, MAP,
Ulrike Tillmann, Peter Grindrod, and Heather A. Harrington, “A Roadmap for the
Computation of Persistent Homology”, submitted, arXiv:1506.08903


