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Focus

• Yesterday presentation:

Improving the Wavefield Reconstruction Inversion (WRI) method based upon the

alternating direction method of multiplier (ADMM).

For more details,

H. Aghamiry, A. Gholami and S. Operto, Improving full-waveform inversion by wavefield

reconstruction with alternating direction method of multipliers, Geophysics, 84(1), R139-R162, 2019.

• Today focus:

Which regularizer for subsurface imaging and its interfacing with ADMM-based WRI.

For more details,

1. Aghamiry, A. Gholami and S. Operto, Implementing bound constraints and total-variation

regularization in extended full waveform inversion with the alternating direction method of

multiplier: application to large contrast media, arXiv:1902.02744, 2019.

2. H. Aghamiry, A. Gholami and S. Operto, Compound Regularization in Full-waveform Inversion

for Imaging Piecewise Media, arXiv:1903.04405, 2019.
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Seismic imaging of the subsurface by Full Waveform Inversion:
Full-space versus Reduced-space formulation of FWI

• PDE-constrained optimization problem

min
m,u

∑
s

‖Pus − ds‖22, subject to A(m)us = bs, s ∈ [1;Ns] (1)

where A(m) = ω2diag (m) + ∆ is the scalar Hemmholtz operator.

• Method of Lagrange multiplier

min
m,u

max
v
L(m,us,vs) = min

m,u
max
v

∑
s

‖Pus − ds‖22 +
∑
s

vTs
[
A(m)us − bs

]
. (2)

• Full-space formulation: joint update of m, u, v (KKT system).

• Reduced-space unconstrained optimization (projection on the parameter space).

min
m

∑
s

‖PA−1(m)bs − ds‖22.

• Highly nonlinear cycle skipping → Need of extended search space.
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Wavefield Reconstruction Inversion (WRI) (van Leeuwen and Herrmann, 2013,
2016)
Extending the FWI search space

• Wavefield Reconstruction Inversion (WRI) extends the FWI search space with a penalty method.

min
u,m

∑
s

‖Pus − ds‖+ λ
∑
s

‖A(m)us − bs‖22 (amount to set v = λ [A(m)u− b]).

1. Wave-equation relaxation with a feedback term to the data

→ foster data fidelity and prevent cycle skipping accordingly.( √
λA(m0)

P

)
us =

( √
λbs
ds

)
,

2. Parameter estimation by minimization of the source residuals the relaxation generated

→ Push back the reconstructed wavefield toward the wave equation constraint.

m
∗

= arg min
m

∑
s

‖A(m)u
∗
s − bs‖22

∇mC(m) =
∑
s

(
∂A(m)

∂m
u
∗
s

)T (
A(m)u

∗
s − bs

)
.

• Steps 1 and 2 are solved in alternating mode or through variable projection. The former breaks

down FWI into a sequence of two linear subproblems (FWI is a biconvex problem).

• The issue of the dynamic control of the penalty parameter (Fu and Symes, 2017).
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FWI: Other source of errors and ill-posedness:
Regularization issue

• FWI ill-posedness → need prior implemented with regularization.

1. Noise

2. Approximate wave physics

3. Incomplete subsurface illumination from the surface

4. Parameter cross-talk in multi-parameter reconstruction

5. Large contrasts (salt, basalt, ...)

• Two popular regularizations in geophysics and image denoising:

1. Second-order Tikhonov regularization

‖m‖Tikh =
∑
‖∇2

xm‖
2
2 + ‖∇2

ym‖
2
2 + ‖∇2

zm‖
2
2.

Drive inversion toward smooth reconstruction.

2. Blockiness-promoting Isotropic Total Variation (TV) regularization

‖m‖TV =
∑√

|∇xm|2 + |∇ym|2 + |∇zm|2.

Drive inversion toward piecewise homogeneous (blocky) reconstruction.

∇i and ∇2
i : first and second-order difference operators in the i direction (i ∈ {x, y, z}).

• Regularizations implemented in FWI with penalty method (Askan et al., 2007; Anagaw

and Sacchi, 2011; Brandsberg-Dahl et al., 2017; Kazei et al., 2017) or as a hard

constraint (Peters and Herrmann, 2017; Esser et al., 2018).

5



Interfacing compound regularizations with ADMM in WRI:
Combining smoothness and blockiness (Gholami and Hosseini, 2013)

• The subsurface as a piecewise smooth medium (a stack of layers in which properties

vary smoothly) → a single regularization cannot account for the different statistical

properties of the subsurface → combine Tikhonov and TV regularizations.
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Regularized Wavefield Reconstruction Inversion:
Augmented Lagrangian Method (Bertsekas, 2016)

• Regularized constrained problem

min
us,m

C(u,m) = Reg(m) subject to Pus = ds and A(m)us = bs, s ∈ [1;Ns].

• Tackled with Augmented Lagrangian method

min
us,m∈C

max
v,w

Reg(m) +

Ns∑
s=1

vTs [Pus − ds] +

Ns∑
s=1

wT
s [A(m)us − bs]

+
λ

2

Ns∑
s=1

‖Pus − ds‖22 +
γ

2

Ns∑
s=1

‖A(m)us − bs‖22,

(3)

where vs and ws are the dual variables (the Lagrangian multipliers).
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Regularized Wavefield Reconstruction Inversion:
Scaled Augmented Lagrangian Method and primal descent/dual ascent optimization (Boyd et al., 2010)

• The augmented Lagrangian, eq. (3), can also be written in scaled compact form as

min
us,m∈C

max
vs,ws

Reg(m) +
λ

2

Ns∑
s=1

‖Pus − ds +
1

λ
vs‖22 −

λ

2

Ns∑
s=1

‖vs‖22

+
γ

2

Ns∑
s=1

‖A(m)us − bs +
1

γ
ws‖22 −

γ

2

Ns∑
s=1

‖ws‖22,

(4)

• Method of multiplier (Primal descent / Dual ascent) after change of variables

dks = −vks/λ and bks = −wk
s/γ:

min
us,m∈C

Reg(m) +
λ

2

Ns∑
s=1

‖Pus − ds − dks‖22 +
γ

2

Ns∑
s=1

‖A(m)us − bs − bks‖22, (Primal descent)

dk+1
s = dks + ds −Pus, (Dual ascent)

bk+1
s = bks + bs −A(m)us, (Dual ascent)

(5)

beginning with d0
s = 0 and b0

s = 0.
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Regularized Wavefield Reconstruction Inversion:
Operator splitting and the alternating-direction method of multiplier

• ADMM breaks down the primal problem into two linear sub-problems (biconvex

problem)

uk+1
s = arg min

u

∥∥∥∥
[ √

λ
γ
P

A(mk)

]
us −

[√
λ
γ

(ds + dks )

bs + bks

]∥∥∥∥2
2

(Primal descent) (6a)

mk+1 = arg min
m∈C

Reg(m) +
γ

2

Ns∑
s=1

‖A(m)uk+1
s − bs − bks‖22, (Primal descent)

(6b)

dk+1
s = dks + ds −Puk+1

s , (Dual ascent) (6c)

bk+1
s = bks + bs −A(mk+1)uk+1

s , (Dual ascent) (6d)

• The first subproblem (wavefield reconstruction) has a closed-form solution(
AT (m0)A(m0) +

λ

γ
PTP

)
u∗s =

(
AT (m0)bs +

λ

γ
PTds

)
.

• The second subproblem is more complex. We discuss first the choice of Reg before

presenting its solution.
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Regularized Wavefield Reconstruction Inversion:
Implementation of compound regularization: I. Convex combination

• Convex Combination (CC): The solution is forced to satisfy the individual priors

simultaneously.

Φα(x) = α1Φ1(x) + ...+ αrΦr(x), (7)

where weights αi satisfy αi ≥ 0 and

α1 + α2, ...,+αr = 1. (8)

As an example, CC of `1- and `2-norms (`1 + `2-norm) (Gholami, 2013)

Φα(x) = (1− α)‖x‖22 + α‖x‖1, (9)

with 0 ≤ α ≤ 1, which is called Elastic net (Zou and Hastie, 2005).
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Regularized Wavefield Reconstruction Inversion:
Implementation of compound regularization: II. Infimal convolution

• Infimal Convolution (IC): The solution is explicitly decomposed into simple components, each of

them being regularized by an appropriate prior.

Φα(x) = min
x=x1+...+xr

{α1Φ1(x1) + ...+ αrΦr(xr)}. (10)

In the case of two functionals,

Φα(x) = min
z
{(1− α)Φ1(x− z) + αΦ2(z)}. (11)

The IC of `1- and `2-norms (`1 ⊕ `2-norm) leads to the following denoising problem

Φα(x) = min
z
{(1− α)‖x− z‖22 + α‖z‖1}, (12)

which reduces to soft-thresholding (Donoho, 1995):

z = max

(
1−

µ

|x|
, 0

)
◦ x, (13)

where µ = α
2(1−α)

. Plugging z from (13) into (12) gives

Φµ(x) =

{
1
2µ |x|

2 if |x| ≤ µ
|x| − µ

2 if |x| > µ
, (14)

which is nothing other than the Huber function (Huber, 1973).
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Regularized Wavefield Reconstruction Inversion:
Geometrical illustration of l1, l2, their CC and IC regularizations

(a) (b)

(c) (d)

Figure 1: Geometrical illustration of different regularizers. (a) the `1-norm, (b) the `2-norm, (c) the

(`1 + `2)-norm, and (d) the (`1 ⊕ `2)-norm.
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Regularized Wavefield Reconstruction Inversion:
Implementation of compound regularization: II. Infimal convolution

We test two infimal-convolution compound regularizer

• IC-based TT regularizer: Tikhonov + first-order Total Variation

ΦTT
α (x) = min

x=x1+x2

(1− α)‖∇2x2‖22 + α‖∇x1‖1. (15)

• Total Generalized Variation (TGV) regularizer: first-order + second-order Total

Variation (Bredies et al., 2010; Setzer et al., 2011)

ΦTGV
α (x) = min

x=x1+x2

(1− α)‖∇2x2‖1 + α‖∇x1‖1. (16)
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Regularized Wavefield Reconstruction Inversion:
Solving the parameter estimation subproblem with IC-TT regularization

• IC-TT regularized parameter estimation subproblem

mk+1 = arg min
m=m1+m2

m∈C

ΦTT
α (m1,m2) +

γ

2

Ns∑
s=1

‖A(m)uk+1
s − bs − bks‖22, (17)

where m1 and m2 denote the blocky and the smooth components of the subsurface,

respectively.

• Capitalizing on the bilinearity of the wave equation,

mk+1 = arg min
m=m1+m2

m∈C

ΦTT
α (m1,m2) +

γ

2

Ns∑
s=1

‖Lsm− ys‖22, (18)

where Ls = ω2diag
(
uk+1
s

)
and ys = bs + bks −∆uk+1

s .

• In the sequel, we introduce auxiliary primal variable p = ∇m1 to decouple the `1 and

the `2 minimization problems and solve the former ones with proximal algorithms

following the split Bregman method (Goldstein and Osher, 2009).
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Regularized Wavefield Reconstruction Inversion:
Application of ADMM (or Split Bregman)

Applying ADMM to (18) breaks down the multivariate primal problem into three subproblems

• Primal descent [
mk+1

1

mk+1
2

]
= arg min

m1,m2

C(m1,m2,p
k
,m

k
, p̃
k
, m̃

k
), (19a)

p
k+1

= arg min
p

α‖p‖1 +
ζ

2
‖∇m

k+1
1 − p− p̃

k‖22, (19b)

m
k+1

= arg min
m∈C

η

2
‖mk+1

1 + m
k+1
2 −m− m̃

k‖22, (19c)

where

C(m1,m2,p
k
,m

k
, p̃
k
, m̃

k
) =

γ

2

Ns∑
s=1

‖Ls[m1 + m2]− ys‖22 + (1− α)‖∇2
m2‖22

+
ζ

2
‖∇m1 − p

k − p̃
k‖22 +

η

2
‖m1 + m2 −m

k − m̃
k‖22,

(20)

• Dual ascent

p̃
k+1

= p̃
k

+ p
k+1 −∇m

k+1
1 , (21a)

m̃
k+1

= m̃
k

+ m
k+1 − (m

k+1
1 + m

k+1
2 ). (21b)
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Regularized Wavefield Reconstruction Inversion:
Subproblem (m1,m2) - Jointly updating m1 and m2 by variable projection

• (m1,m2) are solution of the following system[
G11 G12

G21 G22

] [
m1

m2

]
=

[
h1

h2

]
, (22)

with 
G11 = γ

∑Ns
s=1 LTs Ls + ζ∇T∇+ ηI

G12 = G21 = γ
∑Ns
s=1 LTs Ls + ηI

G22 = γ
∑Ns
s=1 LTs Ls + (1− α)(∇2)T∇2 + ηI

,

and {
h1 = γ

∑Ns
s=1 LTs ys + ζ∇T [pk + p̃k] + η[mk + m̃k]

h2 = γ
∑Ns
s=1 LTs ys + η[mk + m̃k]

,

where I is the identity matrix.

• From the first equation of (22), we find that

m2 = G
−1
12 [h1 −G11m1] (23)

and plugging this into the second equation of (22) we get the following

m1 = (G11 −G22G
−1
12 G11)

−1
[h2 −G22G

−1
12 h1]. (24)

Interestingly, L is diagonal, implying that G12 is also diagonal. Thus we only need to solve an

n× n system to estimate m1, from which m2 easily follows.
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Regularized Wavefield Reconstruction Inversion:
Subproblem (p) and (m) - Proximity operators

• p = [pxpz ]T estimated with a generalized proximity operator (Combettes and Pesquet,

2011)

pk+1 = proxζ/α(z) =

[
ξ ◦ zx
ξ ◦ zz

]
, (25)

where

z = ∇mk+1
1 − p̃k =

[
zx
zz

]
, (26)

and

ξ = max

(
1−

ζ

α
√

z2x + z2z
, 0

)
. (27)

• The subproblem for m has also a component-wise solution given by

mk+1 = projC(mk+1
1 + mk+1

2 − m̃k), (28)

where the projection operator projects its argument onto the desired box [ml.mu]

according to projC(•) = min(max(•,ml),mu).

17



Outline

Introduction

Regularized ADMM-based Wavefield Reconstruction Inversion (WRI)

Numerical example: The 2004 BP salt model

Conclusions

References

17



Application to the BP salt model (left target):
True model
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Regularized ADMM-based WRI - Application to the BP salt model (left target)
Experimental setup

• Fixed-spread surface acquisition.

• Frequency bandwidth: 3-13 Hz.

• Frequency continuation: Batches of 3 frequencies with a 0.5Hz spacing. Three paths

over batches.

• Noiseless.

• Stopping criterion of iteration:

kmax = 20 or (‖A(mk)uk−b‖F ≤ δ and ‖Puk−d‖F ≤ εn),

(29)

with δ=1e-3/1e-3 and εn=1e-5/noise level and kmax is the maximum number of

iterations.

• Setting the penalty parameter λ

λ = 1e-3/2e-2 µ where µ = largest eigenvalue of A−TPTPA−1 (van Leeuwen and

Herrmann, 2016).

• Tested regularizers: (a) Damping (DMP); (b) Tikhonov; (c) TV; (d) Convex

combination of Tikhonov and TV (JTT); (e) Infimal convolution of Tikhonov and TV

(TT); (f) Total Generalized Variation (TGV).
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Regularized ADMM-based WRI - Application to the BP salt model (left target)
Some guidelines for tuning

Penalty param. α λ γ ζ η

Constraints TT weight Obs. Eq. Wave Eq. TV weight Bounds

Table 1: α: balance Tikhonov and TV regularization. λ, γ, ζ, η: weights of the observation equation,

wave equation, auxiliary TV term,bound constraint .wrt. regularization term, respectively.

Some guidelines to select penalty parameters (Aghamiry et al., 2019a)

• We found that α=0.7 was a good pragmatical value.

• We use ζ = η.

• We found that ζ/α = 2% max ‖(zx zx)‖ was a good pragmatical value.

• ζ/γ: small percentage of mean absolute value of the diagonal coefficients of∑Ns
i=1 L

T
s Ls.

• λ/γ: small percentage of of the highest eigenvalue of A(m)−TPTPA(m)−1 (van

Leeuwen and Herrmann, 2016; Aghamiry et al., 2019b)
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Regularized ADMM-based WRI Application to the BP salt model (left target):
True & Initial models
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Application to the BP salt model (left target):
First frequency batch
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Application to the BP salt model (left target):
Convergence history
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Application to the BP salt model (left target):
Source (left) and data (right) residuals at first iteration (top) and at convergence point (bottom)
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Application to the BP salt model (left target):
Final models
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Application to the BP salt model (left target):
Convergence speed

Regularizer DMP Tikhonov TV JTT TT TGV

# iteration 426 448 399 415 361 394

Table 2: Number of iterations of IR-WRI for each regularizer.
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Conclusions

• We have proposed a versatile recipe to cascade bound constraints and various

regularizations in ADMM-based WRI (IR-WRI).

• Nonsmooth regularization are easily implemented with the so-called split Bregman

method and proximal algorithms.

• The subsurface is formed by different components of different statistical properties.

Need to combine different regularizations.

• These regularizations should be combined by infimal convolution rather than by convex

combination.

• When infimal convolution is used, the different subsurface components can be jointly

updated through variable projection.

• Infimal convolution of Tikhonov and TV regularizers perform the most reliable results.

However, TGV is also a relevant alternative for piecewise linear models.

• Bound-constrained TT-regularized IR-WRI allows for the reconstruction of

large-contrast media starting from scratch.

• Further assessment on real data collected by ultra-long offset sparse stationary-recording

acquisitions is scheduled.
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Regularized Wavefield Reconstruction Inversion:
Reminder: bilinearity of the wave equation

• Definition: A function (here, b) of two variables (here, u and m) is bilinear if it is

linear with respect to each of its variables.

• Illustration with the scalar Helmholtz equation

A(m)u = b.

ω2diag (m)u +4u = b.

ω2diag (u)m +4u = b.

L(u)m = y,

with L(u) = ω2diag (u) and y = b−4u.

(30)
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Application to the BP salt model (left target):
Final models (Logs)
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The subsurface as a piecewise smooth medium - Toy example

Matching Piecewise smooth function
Tikhonov (middle) and TV (bottom) components

of the Tikhonov+TV projection (top)
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Wavefield reconstruction Inversion (WRI):
Fitting the data & Satisfying the constraint at convergence point
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Implementing hybrid Tikhonov + TV regularization with IR-WRI:
Joint update of m1 and m2

(mk+1
1 ,mk+1

2 ) = arg min
m1,m2

λ‖L(uk+1)[m1 + m2]− y − yk‖22 + α‖∇2m2‖22

+ γb‖q + q′k −m1 −m2‖22 + γt‖p + p′k −∇m1‖22.

A joint update of m1 and m2 occurs at the point where the derivatives of the functional

with respect to them vanish simultaneously. It is then a solution of the following system of

equations with two unknowns m1 and m2:[
g11 g12

g12 g22

][
m1

m2

]
=

[
r1
r2

]
(31)



g11 = λLTL + γt∇T∇+ γbI,

g12 = λLTL + γbI,

g22 = λLTL + α∇2T∇2 + γbI,

r1 = λLT[y + yk] + γb[q + q′k] + γt∇T [p + p′k],

r2 = λLT[y + yk] + γb[q + q′k]

(32)

where I is the identity matrix.

By using a variable-projection scheme, estimate m2 as a function of m2, it is possible to

reduce the linear system size that we need to solve.

Solve first equation of 31 for m2, m2 = g−1
12 [r1 − g11m1], and injecting in the second

equation

[g11 − g22g
−1
12 g11]m1 = r2 − g22g

−1
12 r1. (33)

Since g12 is a diagonal matrix, we don’t have any computational burden to calculate g−1
12

and m2. Go to main
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Implementing hybrid Tikhonov + TV regularization with IR-WRI:
Solving for q via projection

qk+1 = arg min
q∈C
‖q + q′k −mk+1

1 −mk+1
2 ‖22,

has a closed-form solution which is projection into C.

Projection operator → projC(•) = arg min
q∈C

‖q − •‖22 → projC(•) =

min(max(•,mlb),mub).

Approximates the input point with some other point in the desired set C which is closest to

it in the L2 sense.

Update of qk+1 →

qk+1 = projC(mk+1
1 +mk+1

2 −q′k) = min(max(mk+1
1 +mk+1

2 −q′k,mlb),mub), (34)

Go to main
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Implementing hybrid Tikhonov + TV regularization with IR-WRI:
Solving for p via proximity

The subproblem for p1 and p2 →

pk+1 = arg min
p

∑√
|px|2 + |pz |2 + γt‖p + p′k −∇mk+1

1 ‖22,

has a closed-form solution via proximity.

Proximity operators (Combettes and Pesquet, 2011) → proxγ(•) = arg min
p

f(p) +

γ‖ • −p‖22
Approximates the input point with some other point closest to it in the L2 distance sense

under regularization implemented with the penalty term f(p).

For homogeneous TV norm →

proxγt (•) = max

(
1− 1

γt

√
|∇xmk+1

1 −p′kx|2+|∇zm
k+1
1 −p′kz |2

, 0

)
• .

Update of pk+1 →

pk+1 =

[
proxγt (∇xm1 − p′kx)

proxγt (∇zm1 − p′kz )

]
=

max(1− 1

γt

√
|∇xmk+1

1 −p′kx|2+|∇zm
k+1
1 −p′kz |2

, 0)[∇xm1 − p′kx]

max(1− 1

γt

√
|∇xmk+1

1 −p′kx|2+|∇zm
k+1
1 −p′kz |2

, 0)[∇zm1 − p′kz ]


(35)

Go to main
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Implementing hybrid Tikhonov + TV regularization with IR-WRI:
Bound constraints and TV regularization with proximity optimization

• Bound constraints

qk+1 = projC(mk+1
1 + mk+1

2 − q′k) = min(max(mk+1
1 + mk+1

2 − q′k,mlb),mub)

• TV regularization

pk+1 =

[
proxγt (∇xm1 − p′kx)

proxγt (∇zm1 − p′kz )

]
=


max

(
1− 1

γt

√
|∇xmk+1

1 −p′kx|2+|∇zm
k+1
1 −p′kz |2

, 0

)
[∇xm1 − p′kx]

max

(
1− 1

γt

√
|∇xmk+1

1 −p′kx|2+|∇zm
k+1
1 −p′kz |2

, 0

)
[∇zm1 − p′kz ]
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Implementing hybrid Tikhonov + TV regularization with IR-WRI:
Separate update of m1 and m2

The least-squares system

mk+1
1 = arg min

m1
λ‖L(uk+1)[m1 + mk

2 ]− y − yk‖22 + γb‖q + q′k −m1 −mk
2‖22 + γt‖p + p′k −∇m1‖22,

has a closed-form solution as

mk+1
1 =

[
λLTL+γt∇T∇+γbI

]−1[
λLT [y+yk−Lmk

2 ]+γt∇T [pk+qk]+γb[q
k+q′

k−mk
2 ]
]
.

(36)

Also, the least-squares system of m2

mk+1
2 = arg min

m2
λ‖L(uk+1)[m2+mk+1

1 ]−y−yk‖22+α‖∇2m2‖22+γb‖q + q′k−m2−mk+1
1 ‖22,

has a closed-form solution as

mk+1
2 =

[
λLTL+α∇2T∇2+γbI

]−1[
λLT [y+yk−Lmk+1

1 ]+γb[q
k+q′

k−mk+1
1 ]

]
. (37)

Go to main
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Illustration with the 2004 BP salt model (left target):
TT vs TV regularized IR-WRI
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Illustration with the 2004 BP salt model (central target):
TT vs TV regularized IR-WRI

39


	Introduction
	Regularized ADMM-based Wavefield Reconstruction Inversion (WRI)
	General framework of ADMM-based WRI
	Models of compound regularizers
	Implementing compound regularizers in ADMM-based WRI

	Numerical example: The 2004 BP salt model
	Conclusions
	References

