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Why quantum algorithms? @.

Potential power of quantum resources is too great to ignore

Need quantum algorithms to guide quantum hardware
investment and development

Quantum perspective has inspired new classical algorithms!

Desire for novel quantum applications and techniques
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Limited bag of tricks for speedu

50+ algorithms: http://math.nist.gov/quantum/zoo

Phase Estimation (ca. 1994) Amplitude Amplification (ca. 1996)

e Factoring Unordered search
Graph/network properties
Data collision problems

Matrix product verification

* Quantum chemistry
e Linear systems
* Topological invariants

Hamiltonian Simulation (ca. 1996) Quantum Walk (ca. 2002)

* Boolean formula evaluation
e Spatial search
* Quantum chemistry

Quantum chemistry
Linear systems
Maze solving

New quantum algorithmic approaches are desperately needed!




State of quantum “speedups”m:.
= Unproven exponential speedup:

Shor’s quantum factorization algorithm

= Provable polynomial speedup:
Grover’s quantum search algorithm

= Provable exponential resource advantage
(in specialized models of computation):
Query and communication complexity




Classical bit:

(bit)

Prob. bit:
(p-bit)

Quantum bit:

(qubit)
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Quantum bits
State space
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Quantum gate

Can take the “square root” of ordinary logic gates

Conventional logic gate: NOT G
yes — No \

N0 — YyeS v
Quantum logic gate: VNOT
yes — 50/50 chance of yes or no ©

no — 50/50 chance of yes or no
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LABORATCRY DIRECTED RESEARCH B DEVELCPMENT

Quantum algorithm
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Physical world

Entanglement by analogy
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Superposition space
(possible measurement outcomes)

Probabilistic bits

Entangled qubits

The entangled qubits will always match, even if measured at different
times and across space!
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Quantum factoring

An exponential speedup

If all the silicon in the world’s crust were converted to Pentium chips,
it would take the age of the universe to factor a 5,000-bit number.
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A blueprint for building a quantum computer, R. van Meter & C. Horsman, Comm. ACM, (2013) doi:10.1145/2494568
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Adiabatic quantum computing
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Not a ‘universal’ computer; may have no speedup

a.k.a. “quantum annealing
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This problem is “NP-hard:” it is

unlikely that even a quantum
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omputer could solve it efficiently

An adiabatic quantum computer could be made universal, if the technology

were modified to allow the qubits to interact in more interesting ways
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Metrics status

Where we are, and where we might go

Universal g. computer ~10 qubits, 100 ops ~1,000 qubits, 10,000 ops
1-qubit gates ~1in 10,000 error rate Scalable logical qubit
2-qubit gates ~1in 100 error rate Scalable logical qubit
Analog q. simulator ~1,000 qubits ~10,000 qubits

Quantum annealer ~1,000 qubits ~10,000 qubits

Benchmark: 50 qubits is beyond the simulation
capabilities of today’s best supercomputers.
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[estbed QCs :
Google: 49-qubit goal by December 2017.

NSF: $3M/yr Ideas Lab: Practical Fully-Connected Quantum Computer
Challenge (PFCQC), November 2017

DOE: $5M/yr Quantum Testbed User Facility (pending Congressmnal budget
action)

IBM: Open-Access “Quantum Experience” online since
5/16: 40k users, 270k experiments, 15 published papers

-
&

ETH Zurich: 45 simulated qubits on Cori Il (#5) (4/17)[1]

limage: IBM
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Quantum Approximation Algorithms ).

4 PSPACE problems )

Motivation: hard to efficiently find optimal solutions " NPProblems )

for NP-complete optimization problems, even for
NP Complete
quantum computers
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Approach: an approximation algorithm efficiently
produces a near-optimal solution with a mathematically
provable bound on quality

Approximate
Optimal

Benefit: quantum approximation algorithms (QAA) direct quantum resources
towards higher-quality solutions instead of faster running times, sidestepping
barriers to quantum speedups
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The QAOA ) S

The Quantum Approximate Optimization Algorithm
was introduced by Farhi et al. in 2014

61 i BXi g Yijer ZiZ; | )BT

Only known quantum approximation algorithm
Classical approximation algorithms have been studied since the 1960s

= Can be viewed as a discretization of adiabatic quantum computing
= Results in low-depth quantum circuits

= Generic framework for combinatorial optimization problems




QAOA for Max 3-XORSAT
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Goal of Max 3-XORSAT is to satisfy max number out of m given clauses:

(21 ® 23 & ~24), (—T1 B 22 D T3), ...

Restricted version: each variable appears in at most d clauses

Farhi et al. showed that QAOA beat the best known classical approx alg:

m
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Barak et al.’s result is best possible up

to constants unless P=NP
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QAOA for Maximum Cut @,

We show that QAOA outperforms best classical algorithm for the well-known
Maximum Cut problem on d-regular triangle-free graphs with m edges

“
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Only known quantum approximation algorithm outperforming
the best-known classical algorithm




Sampling vs Optimization

CZOPTI

Our quantum algorithm allows sampling from a probability distribution on
cuts in a graph, likely to yield a cut with many edges
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QAOA Analysis
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Classical Outperforms QAOA

e Linear time algorithm:
W. Staton, Ars Combinatoria 10 (1980), 103-106.

Any 3-regular, connected graph (other than K,):

—/ Staton: -
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