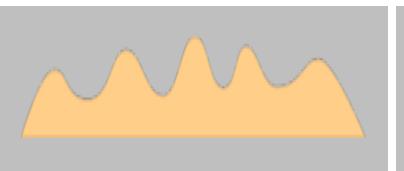
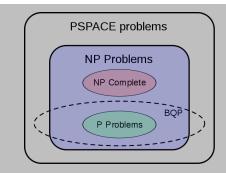
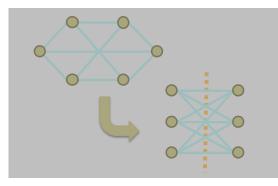
Exceptional service in the national interest







Quantum Approximation Algorithms

Ojas Parekh and Ciaran Ryan-Anderson SIAM Annual Meeting, 2017

Why quantum algorithms?

- Potential power of quantum resources is too great to ignore
- Need quantum algorithms to guide quantum hardware investment and development
- Quantum perspective has inspired new classical algorithms!
- Desire for novel quantum applications and techniques

Limited bag of tricks for speedups

50+ algorithms: http://math.nist.gov/quantum/zoo

Phase Estimation (ca. 1994)

- Factoring
- Quantum chemistry
- Linear systems
- Topological invariants

Amplitude Amplification (ca. 1996)

- Unordered search
- Graph/network properties
- Data collision problems
- Matrix product verification

Hamiltonian Simulation (ca. 1996)

- Quantum chemistry
- Linear systems
- Maze solving

Quantum Walk (ca. 2002)

- Boolean formula evaluation
- Spatial search
- Quantum chemistry

New quantum algorithmic approaches are desperately needed!

State of quantum "speedups" National Laboratories

- Unproven exponential speedup:
 Shor's quantum factorization algorithm
- Provable polynomial speedup: Grover's quantum search algorithm
- Provable exponential resource advantage (in specialized models of computation):
 Query and communication complexity

Quantum bits

Classical bit: (bit)

OR

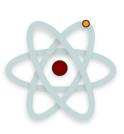
 $\{0, 1\}$

State space

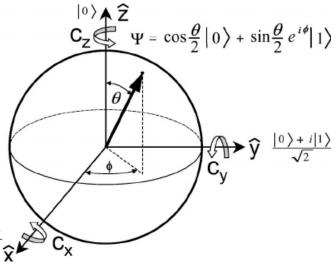
Prob. bit: (p-bit)

0 with probability 1 - p1 with probability p

Quantum bit: (qubit)



 $\alpha|0\rangle + \beta|1\rangle$ 0 with probability $|\alpha|^2$ 1 with probability $|\beta|^2$



Quantum gate

Can take the "square root" of ordinary logic gates

Conventional logic gate:

NOT

$$yes \rightarrow no$$

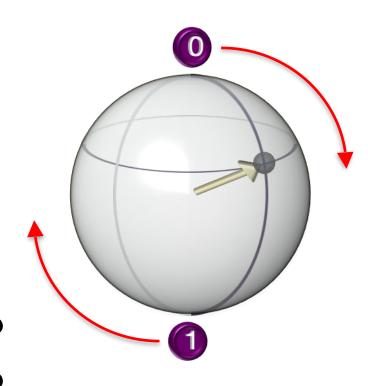
$$no \rightarrow yes$$

Quantum logic gate:

$$\sqrt{\text{NOT}}$$

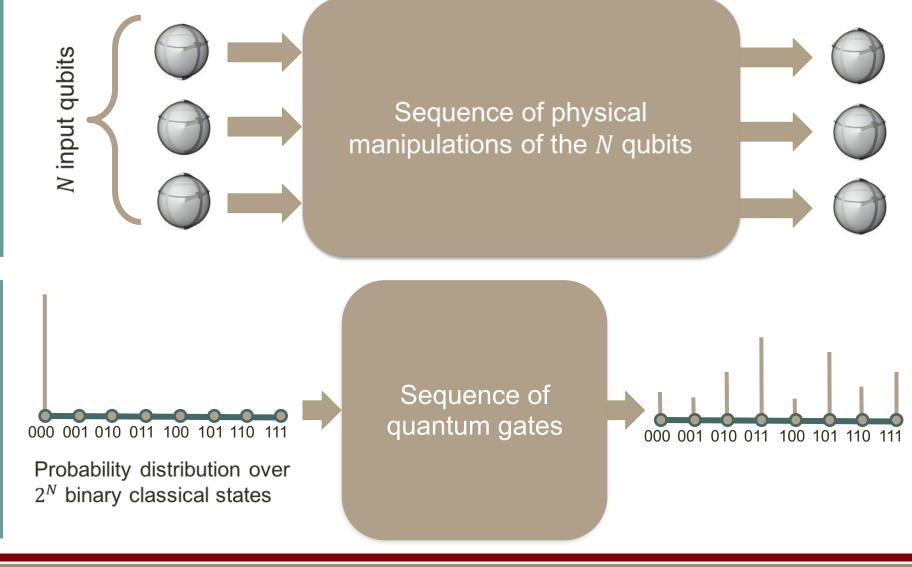
yes $\rightarrow 50/50$ chance of yes or no

 $no \rightarrow 50/50$ chance of yes or no



Quantum algorithm

Physically



Entanglement by analogy

Physical world

Superposition space (possible measurement outcomes)

prob. 1/4

prob. 1/4

prob. 1/4

prob. ½

prob. 0

prob. 0

prob. ½

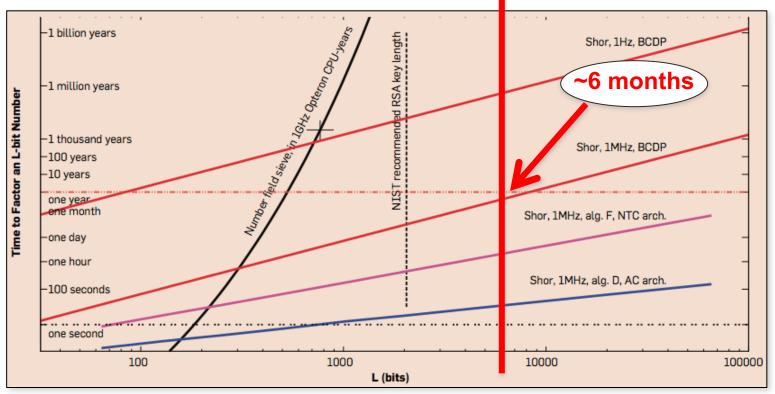
The entangled qubits will always match, even if measured at different times and across space!

Sandia National Laboratories

Quantum factoring

An exponential speedup

If all the silicon in the world's crust were converted to Pentium chips, it would take the age of the universe to factor a 5,000-bit number.



A blueprint for building a quantum computer, R. van Meter & C. Horsman, Comm. ACM, (2013) doi:10.1145/2494568

Sandia National Laboratories

Adiabatic quantum computing

Not a 'universal' computer; may have no speedup

$$\min_{x \in \{0,1\}} \left(\sum_{i,j=1}^{n} J_{ij} x_i x_j + \sum_{i=1}^{n} h_i x_i \right)$$

This problem is "NP-hard:" it is unlikely that even a quantum computer could solve it efficiently.

An adiabatic quantum computer **could** be made universal, if the technology were modified to allow the qubits to interact in more interesting ways.

Metrics status

Where we are, and where we might go

Metric	2016	2026
Universal q. computer	~10 qubits, 100 ops	~1,000 qubits, 10,000 ops
1-qubit gates	~1 in 10,000 error rate	Scalable logical qubit
2-qubit gates	~1 in 100 error rate	Scalable logical qubit
Analog q. simulator	~1,000 qubits	~10,000 qubits
Quantum annealer	~1,000 qubits	~10,000 qubits

Benchmark: 50 qubits is beyond the simulation capabilities of today's best supercomputers.

Testbed QCs

Google: 49-qubit goal by December 2017.

NSF: \$3M/yr Ideas Lab: Practical Fully-Connected Quantum Computer

Challenge (PFCQC), November 2017

DOE: \$5M/yr Quantum Testbed User Facility (pending Congressional budget

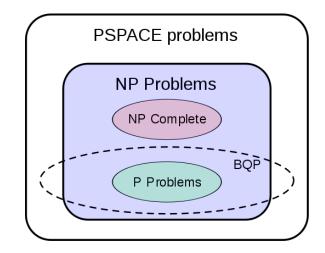
action)

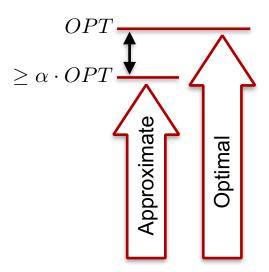
IBM: Open-Access "Quantum Experience" online since

5/16: 40k users, 270k experiments, 15 published papers

Quantum Approximation Algorithms (1)

Motivation: hard to efficiently find optimal solutions for NP-complete optimization problems, **even for quantum computers**





Approach: an *approximation algorithm* efficiently produces a near-optimal solution with a mathematically provable bound on quality

Benefit: *quantum approximation algorithms (QAA)* direct quantum resources towards **higher-quality solutions** instead of faster **running times**, sidestepping barriers to quantum speedups

The QAOA

The Quantum Approximate Optimization Algorithm was introduced by Farhi et al. in 2014

$$e^{i\sum_{i}\beta X_{i}}e^{i\gamma\sum_{ij\in E}Z_{i}Z_{j}}\left|+\right\rangle^{\otimes n}$$

Only known quantum approximation algorithm

Classical approximation algorithms have been studied since the 1960s

- Can be viewed as a discretization of adiabatic quantum computing
- Results in low-depth quantum circuits
- Generic framework for combinatorial optimization problems

QAOA for Max 3-XORSAT

Goal of Max 3-XORSAT is to satisfy max number out of *m* given clauses:

$$(x_1 \oplus x_3 \oplus \neg x_4), (\neg x_1 \oplus x_2 \oplus x_3), \dots$$

Restricted version: each variable appears in at most *d* clauses

Farhi et al. showed that QAOA beat the best known classical approx alg:

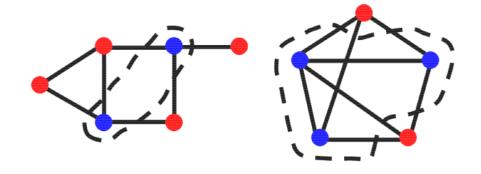
Authors	Year	Result	Туре
Trevisan	2000	$\left(\frac{1}{2} + \frac{O(1)}{d}\right) m$	Classical
Farhi et al.	2014	$\left(\frac{1}{2} + \frac{O(1)}{d^{3/4}}\right) m$	Quantum
Barak et al.	2015	$\left(\frac{1}{2} + \frac{O(1)}{\sqrt{d}}\right) m$	Classical
Farhi et al.	2015	$\left(\frac{1}{2} + \frac{O(1)}{\log d\sqrt{d}}\right) m$	Quantum

Barak et al.'s result is best possible up to constants unless P=NP

QAOA for Maximum Cut

We show that QAOA outperforms best classical algorithm for the well-known Maximum Cut problem on *d*-regular triangle-free graphs with *m* edges

Authors	Year	Result	Туре
Shearer	1992	$\left(\frac{1}{2} + \frac{0.177}{\sqrt{d}}\right) m$	Classical
Hirvonen et al.	2014	$\left(\frac{1}{2} + \frac{0.281}{\sqrt{d}}\right)m$	Classical
Parekh et al.	2017	$\left(\frac{1}{2} + \frac{0.303}{\sqrt{d}}\right)m$	Quantum

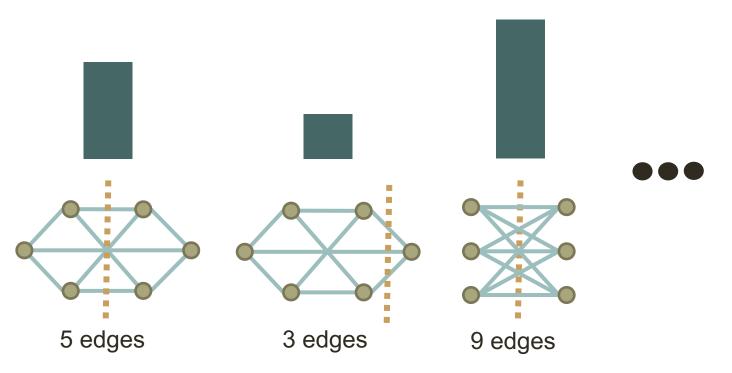


Only known quantum approximation algorithm outperforming the best-known classical algorithm

Sampling vs Optimization



Our quantum algorithm allows sampling from a probability distribution on cuts in a graph, likely to yield a cut with many edges

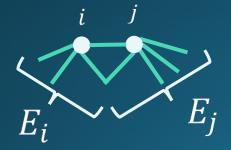


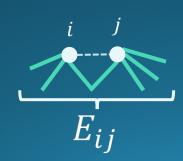
QAOA Analysis

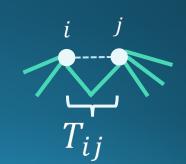
$$\langle C \rangle = \sum_{\langle i,j \rangle \in E} \langle C_{\langle i,j \rangle} \rangle$$

$$\langle C_{\langle i,j\rangle} \rangle =$$

$$\frac{1}{2} \left[1 - \frac{1}{2} \sin(4\beta) \sin(2\gamma) \left\{ \cos^{|E_i| - 1}(2\gamma) + \cos^{|E_j| - 1}(2\gamma) \right\} - \sin^2(2\beta) \cos^{|E_{ij}| - 2|T_{ij}|}(2\gamma) \left\{ \frac{1 - \cos^{|T_{ij}|}(4\gamma)}{2} \right\} \right]$$





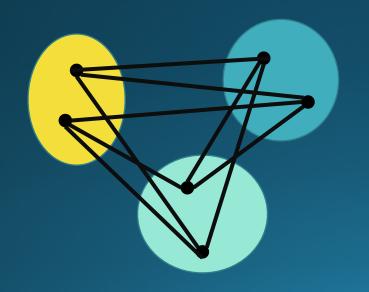


Classical Outperforms QAOA

Linear time algorithm:

W. Staton, *Ars Combinatoria* 10 (1980), 103-106.

Any 3-regular, connected graph (other than K_4):



Staton:

$$C(z) \ge \frac{7}{9}m = 0.\overline{7} m$$

QAOA-1:

$$\langle C \rangle \le 0.692451 \, m$$