Chimeras, Cluster States, and Symmetries: Experiments on the Smallest Chimera

Joseph D. Hart¹, Kanika Bansal², Thomas E. Murphy¹, Rajarshi Roy¹

¹University of Maryland, College Park

²University at Buffalo and US Army Research Lab

SIAM Dynamical Systems

May 24, 2017

Chimeras

- Domains of coherence and incoherence
- Traditionally:
 - large networks
 - non-local coupling
 - only for special initial conditions

Kuramoto, Y., and D. Battogtokh. "Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators." *NONLINEAR PHENOMENA IN COMPLEX SYSTEMS* 5.4 (2002): 380-385.

Abrams and Strogatz Phys. Rev. Lett. **93**, 174102 22 October 2004

Experimental realizations of chimeras

Κ

Spatial light modulator feedback

A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll. Experimental observation of chimeras in coupledmap lattices. *Nature Physics*, **8**: 658 (2012)

Chemical oscillators

M. R. Tinsley, S. Nkomo, and K. Showalter. Chimera and phasecluster states in populations of coupled chemical oscillators. *Nature Physics* **8**: 662 (2012)

Metronomes

E. A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, PNAS **110**(26) 10563-10567 (2013)

Many others, most relatively large networks

Chimeras in small networks

Simulations by Böhm et al., Phys. Rev. E, **91** 040901 (2015): amplitude-phase coupling induces **chimeras**

Optoelectronic oscillators

 $\cos t^2 (\pi V/2V \downarrow \pi)$

Y. Chembo Kouomou *et al., Phys. Rev. Lett.* 95, 203903 (2005) 5/24/2017

T. E. Murphy et al., Phil. Trans. R. Soc. A 368, 343 (2010)

Optoelectronic chaos

A. B. Cohen et al., Phys. Rev. Lett. 101, 154102 (2008)

Networks of opto-electronic oscillators

Uncoupled oscillator

$$A_{ij} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

β=3.8 $τ_f=1.4$ ms

Model Breaks Laplacian coupling and induces multistability $\dot{\mathbf{u}}_i(t) = \mathbf{E}\mathbf{u}_i(t) - \mathbf{F}\beta\cos^2(x_i(t) + \phi_0),$ $x_i(t) = \mathbf{G}\Big(\mathbf{u}_i(t-\tau_f) + \frac{\varepsilon}{n_{in}} \sum_i A_{ij} \Big(\mathbf{u}_j(t-\tau_c) - \mathbf{u}_i(t-\tau_f)\Big)\Big)$ $\mathbf{E} = \begin{vmatrix} -(\omega_L + \omega_H) & -\omega_L \\ \omega_H & 0 \end{vmatrix}, \ \mathbf{F} = \begin{vmatrix} \omega_L \\ 0 \end{vmatrix}, \ \text{and} \ \mathbf{G} = \begin{bmatrix} 1 & 0 \end{bmatrix}$

T. E. Murphy *et al., Phil. Trans. R. Soc. A* 368, 343 (2010) C.R.S. Williams *et al., Chaos*, **23**(4) 043117 (2013) $u(t) \equiv$ filter state vector $A \downarrow ij \equiv$ adjacency matrix $\omega \downarrow L$ and $\omega \downarrow H \equiv$ band-pass filter cutoffs

Triplet-singlet

τ_c=1.8 ms, ε=0.45

Hart, et al. Chaos: 26.9 (2016): 094801.

Chimera states

Hart, et al. Chaos: 26.9 (2016): 094801.

 $[\]tau_c$ =2.3 ms, ϵ =0.40

Summary of experimental results

ARTICLE

Received 23 Sep 2013 Accepted 2 May 2014 Published 13 Jun 2014

DOI: 10.1038/ncomms5079

Cluster synchronization and isolated desynchronization in complex networks with symmetries

Louis M. Pecora¹, Francesco Sorrentino², Aaron M. Hagerstrom^{3,4}, Thomas E. Murphy^{4,5} & Rajarshi Roy^{4,6,7}

Symmetries and cluster synchronization

• Orbits of the symmetry group and subgroups of the adjacency matrix can help do this more quickly

Pecora et al. Nat. Commun. 5, 5079 (2014).

Symmetries and cluster synchronization

 Orbits of the symmetry group and subgroups of the adjacency matrix determine which clusters can form

Global coupling: symmetries allow **ANY** combination of nodes to form a cluster. BUT, stability determines *whether* a given pattern of sync can be observed.

Symmetries and Stability of Synchronization Patterns

- Choose the synchronization pattern.
- Linearize the equation of motion about the synchronization state.
- Transform node co-ordinate system to new co-ordinate system to decouple synchronization manifold and transverse directions.

$B = TAT^{-1}$

• Finding out T is nontrivial, but can be done in software.

Stability Calculations: Chimera State

1. Choose the synchronization state:

■A =&[■■■0@1 &■1@0 &■■1@1 &■1@1 @■■■1&1 @■1&1 &■■0@1 &■1@0] $\boldsymbol{u} \downarrow i(t) = \boldsymbol{E} \boldsymbol{u} \downarrow i(t) - \boldsymbol{F} \beta \cos 12 (x \downarrow i(t) + \phi \downarrow 0)$

 $x \downarrow i (t) = \mathbf{G}(\mathbf{u} \downarrow i (t - \tau \downarrow f) + \mathbf{\varepsilon}/\mathbf{3} \sum \mathbf{j} \uparrow \mathbf{m} \mathbf{A} \downarrow \mathbf{i} \mathbf{j} (\mathbf{u} \downarrow j (t - \tau \downarrow c) - \mathbf{u} \downarrow i (t - \tau \downarrow f)))$

2. Write variational equation:

 $d/dt \Delta \boldsymbol{u} \downarrow i(t) = \boldsymbol{E} \Delta \boldsymbol{u} \downarrow i(t) + \boldsymbol{F} \beta \sin(2x \downarrow i(t) + 2\phi \downarrow 0) \Delta x \downarrow i(t)$

 $\Delta x \downarrow i(t) = G((1 - \varepsilon) \Delta u \downarrow i(t - \tau \downarrow f) + \varepsilon/3 \sum j \uparrow \blacksquare A \downarrow ij \Delta u \downarrow j(t - \tau \downarrow c))$

i = d, s, s j = d, s, s

3. Transformation of co-ordinate systems

• Only transverse component is required for stability calculation $d/dt \Delta v \downarrow T(t) = E \Delta v \downarrow T(t) + F \beta \sin(2x \downarrow s(t) + 2\phi \downarrow 0) \Delta x \downarrow T(t)$

 $\Delta x \downarrow T(t) = \mathbf{G}[(\mathbf{1} - \mathbf{\varepsilon}) \Delta \mathbf{v} \downarrow T(t - \tau \downarrow f) + \mathbf{\varepsilon}/\mathbf{3} \sum j \uparrow \blacksquare \mathbf{B} \downarrow T j \Delta \mathbf{v} \downarrow j(t - \tau \downarrow c)]$

• Performing the sum:

 $\Delta x \downarrow T(t) = \boldsymbol{G}((1 - \boldsymbol{\varepsilon}) \Delta \boldsymbol{\nu} \downarrow T(t - \tau \downarrow f) - \boldsymbol{\varepsilon}/3 \Delta \boldsymbol{\nu} \downarrow T(t - \tau \downarrow c))$

Stable Chimera States

Hart, et al. Chaos: 26.9 (2016): 094801.

Stability of cluster states

Doublet – Doublet State

$$\mathbf{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$
$$\mathbf{B} = \mathbf{T}\mathbf{A}\mathbf{T}^{-1} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Triplet – Singlet State

$$\mathbf{T} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0\\ 0 & 0 & 0 & 1\\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & 0\\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$\mathbf{B} = \mathbf{T}\mathbf{A}\mathbf{T}^{-1} = \begin{bmatrix} 2 & \sqrt{3} & 0 & 0\\ \sqrt{3} & 0 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Stability of Global Synchrony

10 node globally coupled network

Hart, et al. Chaos: 26.9 (2016): 094801.

Conclusions

- Observed stable chimeras in the minimal globally coupled network
- These chimeras can be understood using the same methods recently developed for cluster synchronization
- Cluster stability analysis should work for networks of different sizes and topologies.

References

- 1. Hart, Joseph D., et al. "Experimental observation of chimera and cluster states in a minimal globally coupled network." *Chaos: An Interdisciplinary Journal of Nonlinear Science* 26.9 (2016): 094801.
- 2. Pecora et al. "*Cluster synchronization and isolated desynchronization in complex netwroks with symmetries*", Nat. Commun. **5**, 4079 (2014).
- 3. Sorrentino et al. "Complete characterization of the stability of cluster synchronization in complex dynamical networks", *Science Advances* **2**, 4 (2016).