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The Problem
There has been a significant amount of work to understand extinction in
simple epidemiological systems. (Doering, et al., Multiscale Model. Simul. (2005);
Dykman et al, PRL 101 (2008); Schwartz et al, J Stat Mech, P01005 (2009). )
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Simulation of an extinction event in an endemic SIS model.
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The Problem

Another example...
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The Problem

But what if the topology was more complicated?
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Switching/cycling between multiple states before extinction...
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The Problem

Goal: We want to extend this understanding of extinction to more complex topolgies
(switching/cycling) and develop optimal control methods.
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An example of switching from ecology
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Berryman, “What causes
population cycles of forest lepidoptera,”
Trends in Ecology & Evolution (1996)

Population density fluctuations of Lepidoptera
feeding on larch foliage in the Oberengadin
Valley of Switzerland.

(a) Exapate duratella (Tortricidae), the fluctuations may be regular, but not seasonal.

(b) Teleia saltuum (Gelechidae), there is a switch between two steady states, with an
activation time approximately an order of magnitude larger than the relaxation time.

The drastic population shifts are attributed to a mix of parasitoids, viral outbreak
among the moths, and the quality of the available foliage.

How do we predict extinction in stochastic systems with multiple steady states?
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Outline

Background: populations with internal noise
I Master equation, WKB approximation, optimal path
I Analytical approach to find mean extinction time
I Simple example: Allee effect

Pre-extinction cycling dynamics in a single population
I Model and topoology
I Optimal path and extinction prediction
I Quantifying control measures

Global extinction in multiple interconnected populations
I Model and the optimal path
I Pre-extinction dynamics: cycling

Conclusions
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Stochastic modeling

We assume a finite population.

Internal noise: randomness in the
demography, birth-death
interactions in the system

Analogous to arbitrarily small noise
inducing escape of a particle from
a potential well.

Other effects can be captured by
different stochastic sources such
as external noise.
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Master Equation Approach

Often used in biological and chemical kinetics and population dynamics.

Consider a well-mixed finite population of size N

Discrete state vector X = (x1, x2, . . . , xn) .
Random state transition rates: W (X, r).
Probability ρ(X, t) of finding the system in state X at time t :

The master equation definition

∂ρ(X, t)
∂t

=
∑

r

[W (X− r; r)ρ(X− r, t)︸ ︷︷ ︸
the gain to state X

from state X-r

−W (X; r)ρ(X, t)︸ ︷︷ ︸
the loss of state X

to other states

].

It is the gain-loss equation for the probabilities of the separate states X.

Van Kampen, N.G., Stochastic processes in physics and chemistry, Elsevier (1992).
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Approximating switching/extinction events
The master equation

∂ρ(X, t)
∂t

=
∑

r

[W (X− r; r)ρ(X− r, t)−W (X; r)ρ(X, t)].

Assume the Eikonal approximation:

ρ(X, t) = exp(−NS(q)), for q = X/N.

Since S satisfies the PDE of Hamilton-Jacobi form:
∂S
∂t

+ H
(

q,
∂S
∂q

)
= 0,

S is known as the action, and the Hamiltonian is given by

H(q;p) =
∑

r

w(q; r)[exp(p · r)− 1]

Define the conjugate momenta p = ∂S/∂q.

We assume the distribution is quasi-stationary,
∂S
∂t

= 0. (Rare event)

Kubo, et al., J. Stat. Phys. 9 (1973); Gang, PRA, 36 (1987); Dykman, et al., J. Chem Phys,
100 (1994); Elgart, et al., PRE, 70 (2004); and many others.
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The most likely observed paths to extinction

The shape of the distribution is described by Hamilton’s eqns:

q̇ = ∂pH(q,p; t),
ṗ = −∂qH(q,p; t),

We study this deterministic system to describe
the dynamics of the stochastic system.

Cost: it doubles the dimension of the system
Benefit: Heteroclinic trajectories connect the saddle steady states

Call the manifold connected to the desired state the optimal path: popt(q),
where the action is minimized so that the probability (ρ) is maximized.

Find the action along the path

Sopt =

∫ q1

q2

popt(q)dq

to approximate the mean time to extinction (MTE): MTE = B eNSopt

Since ρ(X, t) = e−NS(q)

Lora Billings (MSU) Pre-Extinction Dynamics in Population Networks SIAM Annual Meeting 2016 8 / 26



Basic model for Allee effect
The Allee effect describes the dynamics of populations that benefit from
conspecific cooperation. (Allee, Animal aggregations (1931))

The population performs better in larger numbers because they are more
capable of avoiding predation, can reproduce faster, and are able to resist
toxic environmental conditions. The growth rate is negative for low densities.

Parameters

µ - death rate of a low-density population
λ - growth rate of a large population
σ - death rate when overcrowded
K - carrying capacity

Basic model: (deterministic)

ẋ = −σ6 x3 + λ
2 x2 − µx .

stable stableunstable

µ = 0.2, σ = 3.0, λ = 1.425
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The stochastic Allee model - Topology

Transition W(X;r)
X µ−→ ∅ µX

2X
λ/K−→ 3X λX(X−1)

2K

3X
σ/K 2

−→ 2X σ X(X−1)(X−2)
6K 2
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Find the Hamiltonian. Scale the system by K , so X = Kx .

H(x ,p) = λx2

2
(ep − 1) +

(
µx +

σx3

6

)
(e−p − 1)

Find the zero-energy phase
trajectories (H = 0):

x = 0, p = 0,

popt(x) = ln
(

6µ+ σx2

3λx

)
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The stochastic Allee model - MTE
Hamilton’s equations: ẋ =

λx2

2
ep −

(
µx +

σx3

6

)
e−p

ṗ = −λx(ep − 1)−
(
µ+

σx2

2

)
(e−p − 1)

The Hamiltonian system has three steady states on the line p = 0:

x0 = 0, x1,2 =
3λ∓

√
9λ2 − 24σµ
2σ

Find the zero-energy phase
trajectories (H = 0):

x = 0, p = 0,

popt(x) = ln
(

6µ+ σx2

3λx

)
p

x
2 xx

1
x

0
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The stochastic Allee model - MTE
Hamilton’s equations: ẋ =

λx2

2
ep −

(
µx +

σx3

6

)
e−p

ṗ = −λx(ep − 1)−
(
µ+

σx2

2

)
(e−p − 1)

The Hamiltonian system has three steady states on the line p = 0:

x1,2 =
3λ∓

√
9λ2 − 24σµ
2σ

, popt(x) = ln
(

6µ+ σx2

3λx

)

Sopt =

∫ x1

x2

ln
(

6µ+ σx2

3λx

)
dx

Mean time to extinction*:

MTE = B eKSopt

p

x
2 xx

1
x

0

*Assaf and Meerson, Extinction of metastable stochastic populations. Phys. Rev. E (2010)
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Allee model: analytical prediction vs. numerical simulation
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Mean time to extinction for an initial population of X2.
The curves are the analytical approximation
The symbols represent numerical simulation results (10,000 realizations)
Parameters: µ = 0.2 and K = 100, σ and λ are varied.
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The cycling model

x
0

x
2

x
4


20


42


24

45 50 55 60 65 70 75
0

100

200

300

400

500

time

X

Add another deterministically stable steady state x4
(builds on the previous model)

Deterministic model:
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The cycling model - Topology

Transition W(X;r)
X µ−→ ∅ µX ,

2X
λ/K−→ 3X λX(X−1)

2K

3X
σ/K 2

−→ 2X σ X(X−1)(X−2)
6K 2

4X
α/K 3

−→ 5X α X(X−1)(X−2)(X−3)
24K 3

5X
β/K 4

−→ 4X β X(X−1)(X−2)(X−3)(X−4)
120K 4
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(
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24

)(
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)
+

(
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σx3
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+
βx5

120

)(
e−p − 1

)
Zero-energy phase trajectories (H = 0):
x = 0,p = 0, and

popt(x) = ln
(

120µ+ 20σx2 + βx4

5x (αx2 + 12λ)

)
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The cycling model - MTE
The probability of the population switching
from x2 to x0 before switching from x2 to x4

P20 =
1
τ20

1
τ20

+ 1
τ24

=
τ24

τ20 + τ24
.

Also, P24 = 1− P20 .

x
0

x
2

x
4


20


42


24

The MTE becomes the sum of the expected times for all possible number of
cycles to occur and the final escape from x2 to x0:

MTE = τ20P20 +
∞∑
i=0

i(τ24 + τ42)(P24)
iP20

= τ20P20 +
(τ24 + τ42)P24

P20

=
τ20τ24

τ20 + τ24
+ (τ24 + τ42)

τ20

τ24
.

p

xx
2

x
3

x
0

x
4

x
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Cycling model: analytical prediction vs. numerical simulation
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Mean time to extinction for an initial population of X2.
The curves are the analytical approximation
The symbols represent numerical simulation results (5,000 realizations)
Parameters: µ = 3.307, α = 0.458, β = 0.047, and σ = 1.8874.
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The cycling model - Adding control

Often the MTE is of interest in the study of population dynamics because
either longevity or quick extinction has value. Consider the population as
pests and a short MTE is ideal.

The control method we model removes individuals at a particular frequency ν.

Transition W(X;r)

X ν−→ ∅ ν.

The Hamiltonian

H(x , p) =
(
αx4

24
+
λx2

2

)
(ep − 1)+

(
µx +

σx3

6
+
βx5

120
+
ν

K

)
(e−p − 1)
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µ = 3.307, α = 0.458, β = 0.047, σ = 1.8874, λ = 3.94
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Cycling in Metapopulations

We now explore extinction dynamics in stochastic, migratory populations.

Consider a 2-population model with birth, annihilation, and immigration.

The deterministic model:

Ẋ = λ1X − σ1
2 X 2 − µ12X + µ21Y

Ẏ = λ2Y − σ2
2 Y 2 + µ12X − µ21Y

Parameters:
λ - birth
σ - death
µ - migration

Limiting behaviors:
both populations coexist
one exists and other dies out
both populations die out (extinction)

PopX

PopY

migration

Can we predict the mean time to global extinction?
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Metapopulations - Stochastic model

The stochastic model transition rates:
X Event W(X;r) Y Event W(X;r)

X
λ1→ 2X λ1X Y

λ2→ 2Y λ2Y
2X

σ1→ ∅ σ1
X2

2 2Y
σ2→ ∅ σ2

Y 2

2

X
µ12→ Y µ12X Y

µ21→ X µ21Y .
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The general pre-extinction dynamics follows the cycling ideas from before:

Population Survival

nonePopX
PopY

PopY

PopX

0 20 40 60 80 100 120 140 160
0

5

10

15

20

Time

P
o

p
u

la
ti
o

n

 

 

PopX
PopY

Figures by Alexa Aucoin (MSU undergraduate)

Lora Billings (MSU) Pre-Extinction Dynamics in Population Networks SIAM Annual Meeting 2016 20 / 26



Metapopulations - MTE
The Hamiltonian for the coupled birth-annihilation model

H = x(epx − 1) + y(epy − 1) +
x2

2
(e−2px − 1) +

y2

2κ
(e−2py − 1)

+ µx(e−px+py − 1) + µy(epx−py − 1)

Case 1: µ = 0, separable.

MTE =
2
√
πσ

λ
3
2

exp
(

K
∫ 0

x1

popt(x)dx
)

Each local population goes extinct
separately. The extinction time is
determined by the patch with the
greatest carrying capacity.
(diamond)

From Khasin, et al., PRE (2012).
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Metapopulations - MTE
The Hamiltonian for the coupled birth-annihilation model

H = x(epx − 1) + y(epy − 1) +
x2

2
(e−2px − 1) +

y2

2κ
(e−2py − 1)

+ µx(e−px+py − 1) + µy(epx−py − 1)

Case 2: µ > 0

approximate the optimal path
numerically (IAMM, etc.)

The limit as µ→ 0 does not
approach the prediction for µ = 0.

Action approximation (square):
Sopt ≈ 2(1− ln 2)(1 + κ)

From Khasin, et al., PRE (2012).
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No cycling: µ = 1
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The Puzzle: µ = 0.25
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Stochastic cooperation for small migration?
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The two noisy local populations behave almost independently for typical small
fluctuations. One population can rescue the other without being too much of a
drain on its own resources.

From Khasin, et al., PRE (2012).
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Conclusions

We explored cycling dynamics within a single population.
I developed a general formulation to capture pre-extinction dynamics
I verified MTE by simulation
I quantified the effect of control in extinction rates.

We considered global extinction in a two population system with cycling.
I identified the optimal path
I described settings in which the WKB approximation breaks down
I identified cooperation and the presence of cycling

A lot more work to be done:
I understand/quantify extinction in cycling in metapopulations
I devise and optimize improved control methods
I approximation for MTE in higher dimensional systems
I experimental verification ...

Thank You!
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