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-I- INTRODUCTION '

DEFINITION OF HOMOGENIZATION

i Rigorous version of averaging, or upscaling

1 Process of asymptotic analysis when a scale parameter ¢ — 0

GOAL OF HOMOGENIZATION

i Extract effective or homogenized parameters for heterogeneous media

1 Derive simpler macroscopic models from complicated microscopic models

iz Basis for multiscale numerical methods

Various methods of homogenization (rigorous or not):

for simplicity, I focus on two-scale asymptotic expansions for periodic media.
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(PERIODIC HOMOGENIZATION)
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Main assumption: the heterogeneous medium is periodic. The small parameter
€ is the ratio between the period and a characteristic size of the domain.
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(Model problem]

Stationary diffusion equation

— div (A (E) Vue) = f(z) in Q

€

ue = 0 on 0f)

with a coefficient tensor A(y) which is periodic in the unit cell Y = (0,1)¥,

uniformly coercive and bounded (not necessarily symmetric)

N
alel? < N Ay(y)ee; < BIEP, VEERN,VyeY (62a>0).

1,7=1

y — A(y) l-periodic = = — A (f) e-periodic
€
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‘TWO—SCALE ASYMPTOTIC EXPANSIONSI

Direct Computation
+ Reconstructed Flux

5 20
+00 T
Ansatz for the solution U (x) = €'u; (33, —>

@)=Y e (v

1=0

with u;(x,y) function of both variables x and y, periodic in y (see figure above).

Derivation rule \V4 (uz (:13, %)) _ <€_1vyui 4 qui) (ac, f)

€
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(CASCADE OF EQUATIONS)

—e? [ divy AV, uo] (w, z)

€

i

—e 1 [divy A(Vauo + Vyu) + dive AV, ug) (:I; Z)

—EO [ diVXA(VxUO + Vyul) + diVyA(qul + VyU2)] (377 %)

¢ [ divi A(Vau; + Vyuirr) + divy A(Vauipr + Vyuirs)] (J?a %)
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[Interpretation of the cascade of equations]

In this series, each power €’ is identified to zero:

— divy (A(y)Vyuisa(2,)) = F (wi,wi1) (2,y) in Y

«~ This is a partial differential equation in the variable y for the unknown ;. o.
=~ We supplement it with periodic boundary conditions.
~ The macroscopic variable z is just a parameter.

<~ Only the 3 first equations are necessary.
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[6_2 equation]

[6_1 equationj

where the w;’s are the solutions of the cell problems

— divy (A(y) (e; + Vywz(y))) =0 inY
y — w;i(y) Y -periodic,

[60 equation] = homogenized equation

— divy (A*qu(x))
u=20
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Homogenized or effective tensor:

A= [ A e+ V) - 6 + Vyw,0) dy

~ Explicit formula for A* (depending on the cell problems).
~ A* does not depend on €, f, u or the boundary conditions.
~ A* is positive definite (not necessarily isotropic even if A(y) was so).
Theorem.
ue(x) = u(z) + euq (a:, %) +re with  ||re]| gy < Cel/?

In particular [lue — ul|p2(q) < Cel/2.
Remark. The first-order corrector is not negligible for the gradient

Vue() = Vaule) + (Vyur) (2, )+t with tellz2e) < O

The error estimate is limited by boundary layers.
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(TWO-SCALE CONVERGENCE METHOD)

One way of making periodic homogenization rigorous.

Definition. A sequence of functions u. in L*(Q) is said to two-scale converge to
a limit ug(z,y) belonging to L?(Q x Y) if, for any Y-periodic smooth function
o(x,y), it satisfies

lim . Ue () (:13, %) dr = /Q/Y uo(x, y)e(x, y)dxdy.

e—0

Theorem (Nguetseng, Allaire). From each bounded sequence u, in L?(Q)
one can extract a subsequence, and there exists a limit ug(z,y) € L*(2 x Y) such

that this subsequence two-scale converges to ug.
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[My goal in this lecture]

To go beyond the previous simple and ”text-book” example !
To emphasize the role of scaling in modeling issues.

To work out the details without too much mathematics...

I made the choice not to discuss the applications: too bad...

My motivation was nuclear waste underground storage.

I start with the simplest of the complex models I want to address.

In the end, I will say a few words on more complex models...
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-II- REACTIVE TRANSPORT'

Microscopic model

> Infinite porous medium: (connected) fluid part Q; C RY.

7~ Saturated incompressible single phase flow in {2, and a single solute.
7= Linear reaction rates (adsorption/desorption process).
¥ Concentrations u in the fluid and v on the solid boundary.

convection diffusion in the bulk:

0
6—2 +b-Vyu— divy(DVyu) =0 in Qf x (0,7),

linear adsorption process on the pore boundaries:

ov v
5. = k(u— E) =—-DV,u-n on 00 x (0,7T),




Homogenization of reactive transport 14 G. Allaire

[Assumptions and scaling]

Incompressible fluid:
divb=01in Qy and b-n =0 on 0.

At the microscopic scale (with characteristic lengthscale £) the Péclet and
Damkohler numbers are assumed of order 1

/b ’k
Pe = ) and Da = )

To upscale this model, we define a large macroscopic scale ¢! and a long
time scale of order =2 (parabolic or diffusion scaling)

r=ey and t=é€T.

We define
ue(t,xr) =u(r,y) and v(t,x) =v(1,y).

Remark: another possibily is the hyperbolic scaling x = ey and t = 7.
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[Periodicity assumption}
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X Periodic unit cell Y = (0,1) = Y* U O with fluid part Y*

X Periodic (infinite) porous media xz € ) < y € Y*

X

) with divyb=0in Y* and

X Incompressible periodic flow b.(z) = b (
b-n=0on 00

€

T
X Periodic symmetric coercive diffusion D.(x) = D (—)
€
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(Rescaled model]

In these rescaled variables (with T' = €?7) the reactive transport system is

( Ou. 1
ot
OV,
ot

\ Ue(2,0) = Ujnie () and ve(x,0) = vVinie(T).

— divy(DVyzue) =0 in Q¢ x (0,7)

-non 09 x (0,T)

At the macroscopic scale (with characteristic lengthscale L) the Péclet and

Damkohler numbers are large

Lb
Pe = — = ! = —=— = !
S De O(e”") Da O(e™ )
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(Goal of homogenization]

Find the effective diffusion tensor.
This is the so-called problem of Taylor dispersion (1953).

Many previous works, including Adler, Auriault, Choquet, van Duijn, Knabner,
Mauri, Mikelic, Pop, Quintard, Rosier, Rubinstein, etc.
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Theorem. The solution (ue,v.) satisfies

b*
ue(t, x) = ug <t,m — —t) and v (t,r) = Kug (

€

with the effective drift

; / bly)dy

T Y|+ K|00|y_1

and ug the solution of the homogenized problem

)
Ouo _ div (A*Vup) =0 in RN x (0,7)

ot
Y™ [ uinie(x) + |00 N1Vt (T) . N
ug(t =0,2) = in R
\ O( ) ’Y*|—|—K’80|N_1

Remark. Transport and chemistry cannot be decoupled for computing effective

coeflicients.
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(Remarks]

1) Precise convergence:

* *

b
ue(t, ) = ug (t,:zc — —t) +7rd(t,x) and v (t,x) = Kug (t,m — —t> +7r(t, )

€ €

with

T
lim/ / 0 (¢ )2 dt da = 0,
e—0 0 RN

2) Equivalent homogenized equation with convection: change coordinates !
Define g (t, x) = ug (t, x — %t) Then, it is solution of

ST
% + —b* . Vug — div (A*V’LNLQ) =0 in RY x (O,T)

ot €
~ Y * [ winit(z) + [00|N-1Vinit(z) . N
ug(t =0,2) = in R
| Tl ) V4| + K|0O|§ 1
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[Homogenized diffusion tensor]

The homogenized diffusion tensor is

A" = (JY7] + K100 | n—1) "' (A] + 43)

K2
with A] = 7]6’O|N_1b* ®b" and A3 = DI+ V,w(y)) X+ V,w(y)' dy

Y*
where the components w;(y), 1 <7 < N, of w(y) are solutions of the cell problem

y

b(y) - Vyw; — divy (D(y) (Vyw; +€;)) = (b* —b(y)) - e; in Y™

D(y) (Vyw; +¢€;)-n = Kb*-e; on 00

| ¥ — w;(y) Y-periodic

Remark that the value of b* is exactly the compatibility condition for the

existence of w;.
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(TWO-SCALE ANSATZ WITH DRIFT)

Formal proof of this homogenization result.

Standard two-scale asymptotic expansions must be modified to introduce an
unknown large drift b* € RY

Ry b*t «x
ue(t7x) — Zezu’i (tax _ ’ _) )
€ €

1=0

with u;(t, x,y) a function of the macroscopic variable x and of the periodic
microscopic variable y € Y = (0,1)%.

Similarly

b*t «x
€ €
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We plug these ansatz in the system of equations and use the usual chain rule

derivation

b*t *
V (uz (t,:v — 7{)) = (e_lvyui + qui) (t,:zc — b t, z) :
€ € € €

plus a new contribution

0 U t,.iz:—bt,E 8ui—e_1b*-vxuz‘ t,x—btaz
ot € € ot  ~ ~ v € €

new term
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1
Ou + —be Ve — dlvx(DekuG) =0 n QE X (O’T)

ot €
ue(m,O) — uinit(m)a S Qea

ov. k c 1
81; =6—z(ue—%)=—;Devxue-n on 9 x (0,T)

Ve(,0) = vinie (), = € 00,
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(Fredholm alternative in the unit CellJ

Lemma. The boundary value problem

/

by) - Vyu(y) — divy (D(y)Vy0(y)) = g(y) in ¥*
D(y)V,v(y) - n = h(y) on 00
y — v(y) Y-periodic

\

admits a unique solution in H!(Y™*), up to an additive constant, if and only if

/*g(y)dy+/80h(y)d8=0-
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Equation of order ¢ “:

We deduce

(Cascade of equationsJ

2

/

b(y) : VyUQ — diVy (D(y)Vyuo) =0inY~
D(y)Vyup-n=0= k( 0— "’70) on 00

L Y — Up, Vo (t, x, y) Y -periodic

uo(t, x,y) = ug(t,x) and vo(t, z,y) = Kug(t, )

G. Allaire
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Equation of order ¢ !:

i

—b* - Vyup +b(y) - (Vauo + Vyur) — divy (D(y) (Vaup + Vyur)) =01in Y™

—D(y) (Vyuo + Vyur) -n=—-b"-Vyvy-n = k<u1 — ”?1) on 00

y — u1,v1(t, x,y) Y-periodic

\

We deduce

n
0u0

(9:1:@- (t7 x)w'é (y)

ul(ta xay) —

1=1
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(Cell problem]

y

b(y) - Vyw; — divy (D(y) (Vyw; +€;)) = (b* —b(y)) - e; in Y™

D(y) (Vyw; +¢€;)-n= Kb*-e; on 00

| ¥ — w;i(y) Y-periodic

The compatibility condition (Fredholm alternative) for the existence of w; gives
the value of the drift velocity:

b = (V] + 00| y_1 )" / b(y)dy.

*
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Equation of order :

/

b - vaQ — diVy (Dvy’LLQ) = b* - qul —b- qul
+ divy (DV,u1) + divy (D(Vyus + Vaug)) — 9% in Y™

—D(y) (Vyua +Vyur) -n = % —b* -V, = k(u — %) on 00

|y — u2,v2(t, x,y) Y-periodic

Compatibility condition for the existence of us:

<b* Vot — b+ Vaur + divy (DVu) + divy (D(Vyus + Vaup))
Y*

)dy —/ (Dvxul -+ % —b* . val)ds =0

Replacing uq by its previous value in terms of V,ug we obtain the homogenized

problem.
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(Homogenized equation}

)
Ouo _ div (A*Vup) =0 in RN x (0,7T)

ot
V¥ [ul(z) +|00|n_10"(2) .y
ug(t =0,2) = in R,
\ O( ) ’Y*|+K’80|N_1

The initial condition is an average of

=0,2) = u’(z) in Y*
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(How to make a rigorous proofJ

The proof is made of 3 steps
1. A priori estimates.
2. Passing to the limit by two-scale convergence with drift.

3. Strong convergence.
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[A priori estimatej

The model is well-posed: it is a standard parabolic system of equations.

Energy estimate: multiply the bulk equation by u. and the surface equation by
ev. / K, integrate by parts to get

1 d ;
e 2d 2d
M(/ e 2dz + = /m .| s>
/ D.Vu, - Vu.dz + = / (u
0.
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[TWO—SC&IG convergence with drift]

Proposition (Marusic-Paloka, Piatnitski). Let b* € RY be a given drift
velocity. Let w. be a bounded sequence in L?((0,7T) x RY). Up to a subsequence,
there exist a limit wq (¢, z,y) € L2((0,T) x RN x T¥) such that w, two-scale

converges with drift weakly to wg in the sense that

lim/ / we(t, x)d (tm—b—tf)dtdac—
e—0 RN
///wotxy (t,x,y) dt dz dy
RN JTN

for all functions ¢(t,x,y) € L* ((0 T) x RY; C( TN))
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-ITI- NUMERICAL RESULTS

/
W

Numerical computations with FreeFem-++ in 2-d for circular obstacles.
The incompressible velocity b(y) is a Stokes solution in the unit cell Y.

Academic geometry for qualitative study. For real applications go for a

Representative Volume Element.
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(Cell problem)

/

b(y) - Vyxi — DAyx; = (0" —b(y)) -e; in Y™

D (Vyxi+e;) -n=Kb-e; on 00

y — xi(y) Y-periodic

\

The homogenized velocity is

0.01808
—6.759 -107°

b* =

We plot the dispersion tensor A* for increasing values of the Péclet number
(multiplying the velocity field b(y) by Pe).
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T I T T T

A*_11

A*_12

- - - A% 22

50 60

Pe_loc

Entries A7, A], and A%, of the dispersion matrix A* as a function of the local

Péclet number, for Da;,. = 1.
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{A*_11=A1+A2|

Pe_loc

Log-log plot of the (1,1) entry of the dispersion matrix A* = A; + As, together

with its 2 components A; and A, as a function of the local Péclet number, for
Daloc = 1.
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Log-log plot of the longitudinal dispersion A7, as a function of the local Péclet

number, in the absence of chemical reactions, K = 0 (asymptotic slope ~ 1.7).
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(S—d case: obstacles are balls]

Same log-log plot of the longitudinal dispersion A}, with (left) and without
(right) chemical reactions in 3-d for a ball (asymptotic slope ~ 1.9).
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-IV- A NON-EQUILIBRIUM MODELI

X What if the velocity is not divergence-free 7

X What if reactions take place in the bulk 7

X For simplicity we address these issues on a simpler model without surface

concentration.

convection diffusion reaction in the bulk:

0
6_2+b-Vyu— divy(DVyu) +ru=0 in Qp x(0,7),

boundary condition:

_Dvyun:ku on anX(OaT)7

No assumption on the velocity b(y) and on the reaction coefficient r(y) !
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[ScalingJ

To upscale this model, we define a large macroscopic scale ¢! and a long

time scale of order =2 (parabolic or diffusion scaling) = ey and t = €*7. We

define u.(t,x) = u(7,y) which is a solution of
( Ou. 1 : 1 .
Y —|_ _bG : v;{;ue - leCIJ(DEVCBuE) —|_ S Te Ue = O 111 QE X (07 T)
ot ¢ €2
’U,G(CC,O) — u’i’n’it(x)a T € Qea

—D. NV ue-n = ﬁuE on 0Q. x (0,7).

\ €

New ansatz: (unknown) drift b* € R and (unknown) reaction rate r* € R

b*t
ue(t,x) =e " (t,iﬂ -, E) :

) € €
1=0

with u;(t, x,y) Y-periodic with respect to y.
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New e~ 2 equation:

y

b(y) - Vyup — divy (D(y)Vyuo) + r(y)up = r*up in Y*
D(y)Vyup - n + kug = 0 on 00
y — ug(x,y) Y-periodic

\

It is a spectral problem ! The parameter r* is the first eigenvalue:

/

b-Vy— divy (DV, ) +1r =r*yY in Y™
DV, -n+kyp=0 on 00

Ly — Y(y) Y — periodic

By uniqueness of the first cell eigenfunction ¢ (Krein-Rutman), we deduce

uo(z,y) = u(z) P(y)

Only the first eigenfunction is positive and can be interpreted as a local

equilibrium concentration.
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New ¢! equation: (cell problem)

2

b(y) - Vyur — divy (D(y)Vyur) +r(y)ur —r*ug =
b* - Vaug — b(y) - Vaug + divy (D(y)Vyug) in Y

D(y)V,ui(z,y) -n+ ku; = —D(y)Vzug - n on 00

|y — ui(z,y) Y-periodic

We define b* such that the Fredholm alternative holds true, i.e. the right hand

side is orthogonal to ¥* the first adjoint eigenfunction.

We deduce that u; depends linearly on V ug(x,y) = ¥ (y)Vu(x):

ui(z,y) = Z g; (z)Y(y)ws(y)
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New €’ equation:

(b Vyue — divy (DVyug) + rug — r*ug = b* - Vyup —b- Vyug
+ divy (DVu1) + divy (D(Vyur + Vaug)) — %% + fin Y™

D(y)Vyuz - n+ kus = —D(y)Vzu1 - n on 00
|y — uz2(z,y) Y-periodic

Fredholm condition for the existence of us:

(b* Vaus — b+ Vauy + divy (DV,u) + dive (D(Vyuy + Vaug))

_ O
ot

Y*

+ f)?,b*dy — - V*DVup -nds =0

We replace u; by its value in terms of V,u and we find the homogenized

problem.
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Theorem.

X

ue(t, x) ~ e~me Y (—) u (t, T —

€ €

Homogenized problem:

9u _ div(D*Vu) =0 in RV

U(O) = Uinit in RN

with a new formula for D*, and the effective velocity

b = [ [wwtb+ 6DV — 0" DV () dy




Homogenization of reactive transport 46 G. Allaire

Equivalent statement of the same theorem

X

we(t, ) ~ 1 (—) alt, z)

€

. b*t
with u(t,z) =e " € "ty (t, T — )

€

Modified homogenized problem:

ot

’EL(O) — Uinit in RN

+e - Vi — div(D*Va) + e *r*a =0 in RY

\

Remark. Cf. H. Brenner - P. Adler (1982), R. Mauri (1991), P. Donato - A.
Piatnitski (2006), G. Allaire - A.-L. Raphael (2007).




Homogenization of reactive transport 47 G. Allaire

‘-V- GENERALIZATIONS AND CONCLUSION'

Known generalizations:

% Nonlinear effects: Langmuir isotherm for adsorption
% Multiphase or multicomponents transport
% Electrokinetics
Open problems:
% Nonlinear effects with spatially varying drift

#* Multicomponent transport with non-linear reactions (law of mass action)

#* Stochastic setting rather than periodic (still with separation of scales)
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Cell problem for computing D* and u; (x, y) Jw; (y):

i

B' (61' -+ Vywz) — diVy (ﬁ (61' -+ Vy’w@)) = b* . €; in Y*
D (e; + V,w;)-n=0 on 00

Ly = wi(y) Y -periodic

with D = Dyp* and b = [¢p*b + 1 DVy* — p* DV))] which satisfies
1

div,b=01inY*, b-n =0 on 90, b" = —— b(y) dy.
Y| Sy

Therefore the Fredholm condition is satisfied for w; !

Homogenized diffusion tensor:

1
D;,

i~ Y| Jy- D (ei + Vyw;) - (e + Vyw;) dy.




