Sketched Ridge Regression:

Kernel and Overdetermined Problems

Alex Gittens many collaborators RPI UC Berkeley gittea@rpi.edu

SIAM Annual Meeting 2018 | Portland

Kernel Ridge Regression

• Given dataset { $(\mathbf{x}\mathbf{i}, \mathbf{y}\mathbf{i})$ } $\mathbf{i}=1$ în and kernel function $\kappa(\mathbf{x}\mathbf{i}, \mathbf{x}\mathbf{i})$, the problem is to solve

 $\min -\alpha \in \mathbb{R} \hat{n} // \mathbf{K} \alpha - \mathbf{Y} // \mathbf{I} 2 \hat{n} + \lambda \alpha \hat{n} \mathbf{T} \mathbf{K} \alpha$

• Optimal solution:

$$\boldsymbol{\alpha} \boldsymbol{\uparrow} \star = (\mathbf{K} + \lambda \mathbf{I} \boldsymbol{\checkmark} \mathbf{n}) \boldsymbol{\uparrow} - 1 \mathbf{Y}$$

• For large *n* (i.e. $n \approx 10$ %), **K** does not even fit in memory

Iterative Methods

- Since solution doesn't fit in memory, turn to iterative methods
- Classical methods: Conjugate-Gradient, and Gauss-Siedel
- We consider randomized block GS (block coordinate descent) for solving positive-definite systems of the form

• Given a current iterate

$$(\alpha lk+1) l = (\alpha lk) l - A l J f - 1 (A \alpha lk - y) l J$$

Two reasonable schemes, given a blocksize *p*:

- Fixed Partition: Divide [n] into blocks J↓1,...,J↓n/p blocks ahead of time. During the iterates, randomly choose a block J↓t↓k where t↓k ~ Unif({1,...,n/p}).
- Random coordinates: At each iteration, choose uniformly from the set {J∈2↑[n]: /J/=p}.

Fixed partitioning is preferable from a systems perspective (cache locality). Random coordinates suffer from slower memory accesses. Why use random coordinates?

A simple example where the sampling makes a large difference: take $\mathbf{A}\mathcal{I}\beta = \mathbf{I} + \beta/n \mathbf{11}\mathbf{1}\mathbf{T}$ Try GS with n=5000, p=500, $\beta=1000$.

Convergence of Randomized GS

To understand why the behavior differs, look at the theory of randomized GS

Theorem. (Gower and Richtárik, 16)

For all $k \ge 0$,

$$\mathbb{E} / | \boldsymbol{\alpha} \boldsymbol{l} k - \boldsymbol{\alpha} \boldsymbol{l} * / | \boldsymbol{l} \mathbf{A} \leq (1 - \mu) \boldsymbol{\ell} k / 2 / | \boldsymbol{\alpha} \boldsymbol{l} 0 - \boldsymbol{\alpha} \boldsymbol{l} * / | \boldsymbol{l} \mathbf{A} ,$$

where $\mu = \lambda \downarrow min$ ($\mathbb{E}[\mathbf{P} \downarrow \mathbf{A} \uparrow \mathbf{1} / \mathbf{2} \mathbf{S}]$). Here, the randomized column selection matrix **S** depends on the choice of sampling scheme.

For our example

 $\mathbf{A}\mathbf{I}\boldsymbol{\beta} = \mathbf{I} + \boldsymbol{\beta}/n \, \mathbf{11}\mathbf{I}$,

 $\mu \downarrow part = p/n + \beta p$ $\mu \downarrow rand = \mu \downarrow part + p - 1/n - 1 \beta p/$ $n + \beta p$

As $\beta \rightarrow \infty$, $\mu \downarrow part \rightarrow 1/\beta$ whereas $\mu \downarrow rand \rightarrow p/n$. This gap is arbitrarily large.

Sampling Tradeoffs

- Systems Perspective: fixed partition sampling is preferable. Can cache blocks ahead of time, replicate across nodes, etc. *Locality is good for performance*.
- **Optimization perspective**: random coordinates is preferable. Each iteration of GS will make more progress. *Locality is bad for optimization*.

What about acceleration?

Add a Nesterov momentum step to the iterates.

- Does the same sampling phenomenon occur with acceleration?
- Does this provide the $\sqrt{\mu}$ behavior we expect?

(Assuming the acceleration parameters are carefully chosen)

Prior State of Theory

The behavior of accelerated **fixed-partition** sampling is understood

Theorem. (Nesterov and Stich, 16)

For all $k \ge 0$, accelerated block GS with fixed-partition sampling satisfies $\mathbb{E}/|\alpha Jk - \alpha J* || JA \leq (1 - \sqrt{p/n} \mu Jpart) \lambda/2 ||\alpha J0 - \alpha J* || JA$, where $\mu Jpart = \lambda Jmin (\mathbb{E}/\mathbf{P} JA \lambda 1/2 \mathbf{S})$. Here, the randomized column selection matrix \mathbf{S} corresponds to fixed-partition sampling.

Thus fixed-partition sampling loses a factor of $\sqrt{p/n}$ over the ideal Nesterov rate.

Main Result

Theorem.

For all $k \ge 0$, accelerated block GS with any (non-degenerate) sampling scheme satisfies

$$\mathbb{E} / | \boldsymbol{\alpha} \boldsymbol{j} k - \boldsymbol{\alpha} \boldsymbol{j} * / | \boldsymbol{j} \mathbf{A} \leq (1 - \tau) \hat{\boldsymbol{j}} k / 2 / | \boldsymbol{\alpha} \boldsymbol{j} 0 - \boldsymbol{\alpha} \boldsymbol{j} * / | \boldsymbol{j} \mathbf{A}.$$

Here $\tau = \sqrt{\mu/\nu}$, where μ is as before and ν is a new quantity which behaves roughly like n/p.

We prove **this rate is sharp**—there exists a starting point which matches the rate up to constants.

Corollaries

- For fixed partition sampling, we can show that $\nu = n/p$, recovering Nesterov and Stich's earlier result. Combined with the sharpness of the rate, this proves the $\sqrt{p/n}$ loss over the ideal rate is real for the fixed-partition scheme.
- For random coordinate sampling, we can prove the weaker claim

 $v \leq n/p \max_{\tau} |J| = p \\ \max_{\tau} i \in J \mathbf{A} I i /\lambda I min \\ \mathbf{A} I \\ \mathbf{A} I \\ \mathbf{A} = \mathbf{A} I \\ \mathbf{A} = \mathbf{A} I \\ \mathbf{A} = \mathbf{A} =$

Experiment: Accuracy vs Iteration

Experiment: Accuracy vs Time

Overdetermined Ridge Regression

 $\min_{\tau} \mathbf{w} \{ f(\mathbf{w}) = \frac{1}{n} / |\mathbf{X}\mathbf{w} - \mathbf{y}| / \frac{1}{2} \hat{1}^2 + \gamma / |\mathbf{w}| / \frac{1}{2} \hat{1}^2 \}$

Applications:

- Basic ML
- IRLS for *e*42 -penalized GLMs
- Building block in general optimizers

Two Perspectives:

- (Optimization) Deterministic X, y
- (Statistical) Deterministic X, random y

Ridge Regression

 $\min_{\tau} \mathbf{w} \{ f(\mathbf{w}) = \frac{1}{n} / |\mathbf{X}\mathbf{w} - \mathbf{y}| / \frac{1}{2} + \frac{\gamma}{|\mathbf{w}|} / \frac{1}{2} \}$

- Efficient and approximate solution?
- Use only part of the data?

Ridge Regression

 $\min_{\tau} \mathbf{w} \{ f(\mathbf{w}) = \frac{1}{n} | |\mathbf{X}\mathbf{w} - \mathbf{y}| | \sqrt{2} \hat{1} + \gamma | |\mathbf{w}| | \sqrt{2} \hat{1} \}$

Matrix Sketching:

- Random selection
- Random projection

Approximate Ridge Regression

 $\min_{\tau} \mathbf{w} \{ f(\mathbf{w}) = 1/n | |\mathbf{X}\mathbf{w} - \mathbf{y}| | \sqrt{2} \hat{1} 2 + \gamma | |\mathbf{w}| | \sqrt{2} \hat{1} 2 \}$

Optimization Perspective

Sketched solution: w1s

Approximate Ridge Regression

 $\min_{\tau} \mathbf{w} \{ f(\mathbf{w}) = 1/n | |\mathbf{X}\mathbf{w} - \mathbf{y}| | |2 \uparrow 2 + \gamma | |\mathbf{w}| | |2 \uparrow 2 \}$

Statistical Perspective

Related Works on Sketching

Least Squares Regression: $\min_{\tau} \mathbf{w} / |\mathbf{X}\mathbf{w} - \mathbf{y}| / \frac{1}{2} \hat{\mathbf{1}}^2$

Drineas, Mahoney, and Muthukrishnan. *Sampling algorithms for I2 regression and applications*. SODA, 2006. Clarkson and Woodruff. *Low rank approximation and regression in input sparsity time*. STOC, 2013. Raskutti and Mahoney. *A statistical perspective on randomized sketching for ordinary least-squares*. JMLR, 2016.

Ridge Regression: $\min_{\tau} \mathbf{w} 1/n / / \mathbf{X} \mathbf{w} - \mathbf{y} / / \sqrt{2} t^2 + \gamma / / \mathbf{w} / / \sqrt{2} t^2$

Lu et al. *Faster Ridge Regression via the SRHT*. NIPS, 2013. Chen et al. *Fast relative-error approximation algorithm for ridge regression*. UAI, 2015. Avron, Clarkson, Woodruff. *Sharper bounds for Regularized Data Fitting*. Preprint, 2017. Thanei, Heinze, Meinshausen. *Random projections for large-scale regression*. In Big and Complex Data Analysis, 2017.

Matrix Sketching

- We consider only efficient sketching procedures
 - Time cost is o(*nds*) lower than multiplication.
- Examples:
 - Leverage score sampling: $O(nd\log n)$ time
 - SRHT: $O(nd\log s)$ time

Sketched Ridge Regression

• Sketched solution:

w \hat{T} s =argmin τ **w** {1/*n* //**S** \hat{T} **Xw**-**S** \hat{T} **y**// $\hat{\downarrow}$ 2 $\hat{\uparrow}$ 2 + γ //**w**// $\hat{\downarrow}$ 2 $\hat{\uparrow}$ 2 }

 $= (\mathbf{X} \uparrow T \mathbf{S} \mathbf{S} \uparrow T \mathbf{X} + n\gamma \mathbf{I} \mathbf{J} d) \uparrow \dagger (\mathbf{X} \uparrow T \mathbf{S} \mathbf{S} \uparrow T \mathbf{y})$

- Time: $O(sd^2) + T\downarrow s$
 - $T \downarrow s$ is the cost of sketching **S** $\uparrow T \mathbf{X}$
 - E.g. $T \downarrow s = O(nd \log s)$ for SRHT.
 - E.g. $T \downarrow s = O(nd \log n)$ for leverage score sampling.
- Versus the time for the full RR problem: $O(nd^2)$

Results: Optimization Perspective

Optimization Perspective

For the sketching methods

- SRHT or leverage sampling with $s=O(\beta d/\epsilon)$,
- uniform sampling with $s = O(\mu \beta d \log d / \epsilon)$,

 $f(\mathbf{w} \mathbf{\hat{f}} \mathbf{s}) \leq (1+\epsilon) f(\mathbf{w} \mathbf{\hat{f}} \star)$ holds w.p. 0.9.

- **X** \in **R** $\hat{i}n \times d$: the design matrix
 - γ : the regularization parameter
- $\beta = //X //J_2 \uparrow 2 /n\gamma + //X //J_2 \uparrow 2 \in (0, 1]$
- $\mu \in [1, n/d]$: the row coherence of **X**

Optimization Perspective

For the sketching methods

- SRHT or leverage sampling with $s=O(\beta d/\epsilon)$,
- uniform sampling with $s = O(\mu \beta d \log d / \epsilon)$,

 $f(\mathbf{w} \mathbf{\hat{f}} \mathbf{s}) \leq (1+\epsilon) f(\mathbf{w} \mathbf{\hat{f}} \star)$ holds w.p. 0.9.

• **X** \in **R** \hat{n} **×**d: the design matrix

- γ : the regularization parameter
- $\beta = //X //J 2 \uparrow 2 /n\gamma + //X //J 2 \uparrow 2 \in (0, 1]$
- $\mu \in [1, n/d]$: the row coherence of **X**

 $\implies 1/n / |Xwfs - Xwf * | | l 2 f 2 \le \epsilon f(wf *).$

Results: Statistical Perspective

Statistical Model

- **X** \in **R** \hat{n} ×*d*: fixed design matrix
- $\mathbf{w} \downarrow 0 \in \mathbb{R} \uparrow d$: the *true* and *unknown* model
- $y = Xw \downarrow 0 + \delta$: observed response vector
 - $\delta \downarrow 1$, …, $\delta \downarrow n$ are random noise
 - $\mathbb{E}[\delta] = 0$ and $\mathbb{E}[\delta \delta \uparrow T] = \xi \uparrow 2 I \downarrow n$

- Risk: $R(\mathbf{w}) = 1/n \mathbb{E}/|\mathbf{X}\mathbf{w} \mathbf{X}\mathbf{w}\mathbf{J}\mathbf{0}|/|\mathbf{J}\mathbf{2}\mathbf{I}\mathbf{2}|$
 - \mathbb{E} is taken w.r.t. the random noise $\boldsymbol{\delta}$.

- Risk: $R(w) = 1/n \mathbb{E}/|Xw Xw \downarrow 0|/ \downarrow 2 \uparrow 2$
 - \mathbb{E} is taken w.r.t. the random noise $\boldsymbol{\delta}$.
 - Risk measures prediction error.

- Risk: $R(w) = 1/n \mathbb{E}/|Xw Xw \downarrow 0|/ \downarrow 2 \uparrow 2$
- R(**w**)=bias 12 (**w**)+var(**w**)

- Risk: $R(\mathbf{w}) = 1/n \mathbb{E}/|\mathbf{X}\mathbf{w} \mathbf{X}\mathbf{w}\mathbf{i}| 0 ||\mathbf{i}|^2$
- $R(\mathbf{w})$ =bias $12 (\mathbf{w})$ +var (\mathbf{w})
- Optimal Solution $\begin{aligned} \bullet & \text{bias}(\mathbf{w} \uparrow \star) = \gamma \sqrt{n} //(\Sigma \uparrow 2 + n\gamma \mathbf{I} \downarrow d) \uparrow -1 \Sigma \mathbf{V} \uparrow T \mathbf{w} \downarrow 0 // \downarrow 2 , \\ \bullet & \text{var}(\mathbf{w} \uparrow \star) = \xi \uparrow 2 / n //(\mathbf{I} \downarrow d + n\gamma \Sigma \uparrow -2) \uparrow -1 // \downarrow 2 \uparrow 2 , \end{aligned}$

- bias $(\mathbf{w} \mathbf{\hat{f}} \mathbf{s}) = \gamma \sqrt{n} //(\Sigma \mathbf{U} \mathbf{\hat{f}} T \mathbf{SS} \mathbf{\hat{f}} T \mathbf{U} \Sigma + n \gamma \mathbf{I} \mathbf{J} d) \mathbf{\hat{f}} + \Sigma \mathbf{V} \mathbf{\hat{f}} T \mathbf{w} \mathbf{J} 0 //\mathbf{J} 2$,

Solution

- Sketched var(\mathbf{w} $\mathbf{\hat{f}}$ s) = $\xi \hat{\mathbf{f}} 2 / n //(\mathbf{U} \hat{\mathbf{f}} T \mathbf{SS} \hat{\mathbf{f}} T \mathbf{U} + n\gamma \Sigma \hat{\mathbf{f}} 2) \hat{\mathbf{f}} + \mathbf{U} \hat{\mathbf{f}} T \mathbf{SS} \hat{\mathbf{f}} T // \hat{\mathbf{J}} 2 \hat{\mathbf{f}} 2$, Solution
 - Here $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V} \mathbf{1} \mathbf{7}$ is the SVD.

Statistical Perspective

For the sketching methods

- SRHT or leverage sampling with s=0 (d/εî2); X∈Rîn×d: the design matrix
 uniform sampling with s=0(μ dlog d /εî2),
 μ∈[1,n/d]: the row coherence of X

the following hold w.p. 0.9:

$$1 - \epsilon \le bias(\mathbf{w} \, \mathbf{\hat{f}} s) / bias(\mathbf{w} \, \mathbf{\hat{f}} \star) \le 1 + \epsilon,$$

Good!
$$(1 - \epsilon)n/s \le var(\mathbf{w} \, \mathbf{\hat{f}} s) / var(\mathbf{w} \, \mathbf{\hat{f}} \star) \le (1 + \epsilon)n/s.$$

Bad! Because $n \gg s$.

Statistical Perspective

For the sketching methods

- SRHT or leverage sampling with s=O (d/εî2); X∈Rîn×d: the design matrix
 uniform sampling with s=O(μ dlog d /εî2),
 K∈Rîn×d: the design matrix
 μ∈[1,n/d]: the row coherence of X

the following hold w.p. 0.9:

 $1 - \epsilon \leq bias(\mathbf{w} \mathbf{\hat{t}} s) / bias(\mathbf{w} \mathbf{\hat{t}} \star) \leq 1 + \epsilon$ If y is noisy $(1-\epsilon)n/s \leq \operatorname{var}(\mathbf{w} \hat{\mathbf{f}} s)/\operatorname{var}(\mathbf{w} \hat{\mathbf{f}} \star) \leq (1+\epsilon) \frac{1}{\epsilon} S^{\text{variance dominates bias}} R(\mathbf{w} \hat{\mathbf{f}} s) \otimes R(\mathbf{w} \hat{\mathbf{f}} \star).$

Consequence for selection of regularization

Model Averaging to Reduce Variance

Model Averaging

- Independently draw $\mathbf{S}\mathbf{J}1$, \cdots , $\mathbf{S}\mathbf{J}g$.
- Compute the sketched solutions $\mathbf{w}\mathbf{J}1\mathbf{\hat{f}s}$, \cdots , $\mathbf{w}\mathbf{J}g\mathbf{\hat{f}s}$.
- Model averaging: $\mathbf{w} \mathbf{i} = 1/g \sum_{i=1}^{n} \mathbf{w} \mathbf{i} \mathbf{i}$.

Connection to Bagging

- Bagging (bootstrap aggregation) was proposed by Breiman in 1996 for reducing the variance of the decision tree.
- Bagging originates in decision tree methods, but it can be used with many machine learning models.
- For ridge regression, uniform sampling with model averaging is exactly bagging.
- Our approach is not limited to uniform sampling. Random projections and non-uniform sampling outperform uniform sampling.

Optimization Perspective

For sufficiently large *s*,

 $f(\mathbf{w}\mathbf{1}^{\uparrow}\mathbf{s}) - f(\mathbf{w}\mathbf{1}^{\star}) / f(\mathbf{w}\mathbf{1}^{\star}) \le \epsilon$ holds w.h.p.

Without model averaging

• Using the **same** sketching distribution and *s*,

 $f(\mathbf{w} \mathbf{\hat{t}s}) - f(\mathbf{w} \mathbf{\hat{t}*}) / f(\mathbf{w} \mathbf{\hat{t}*}) \le \epsilon/g + \epsilon \mathbf{\hat{t}2}$ holds w.h.p.

With model averaging

Statistical Perspective

• For sufficiently large *s*, the following hold w.h.p.: bias(**w**1̂s)/bias(**w**1̂*) $\leq 1+\epsilon$ and var(**w**1̂s)/var(**w**1̂*) $\leq n/s$ (1+ ϵ).

• Using the **same** sketching distribution and *s*, the following hold w.h.p.:

bias(**w***î*s)/bias(**w***î**) $\leq 1+\epsilon$ and var(**w***î**) $\leq n/s (1/\sqrt{g} + \epsilon)$ *î***2**

With model averaging

Empirical variance reduction

 If s is large compared to d and g is larger than n/s, then var(wîs) < var(wî*).

Experiments on synthetic data.

- $n=10\,15$, d=500, $\kappa(X1TX)=10\,12$.
- Sketch size is s=5000=n/20.
- Regularization parameter $\gamma = 10 \uparrow -6$.
- As g exceeds n/s=20, var(wfs) can be smaller than var(wf*).

Thank You!

Breaking Locality Accelerates Block Gauss-Seidel. Tu, G., et al. ICML 2017 https://arxiv.org/abs/1701.03863

S. Wang, G., and M. W. Mahoney. "Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging". ICML, 2017. https://arxiv.org/abs/1702.04837