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Kernel Ridge Regression

• Given	dataset	{(𝐱↓𝑖 , 𝐲↓𝑖 )}↓𝑖=1↑𝑛  and	kernel	func@on 𝜅( 𝐱↓1 , 𝐱↓2 ),	
the	problem	is	to	solve		
min┬𝛂∈ ℝ↑𝑛   ‖𝐊𝛂−𝐘‖↓2↑2   + λ𝛂↑𝑇 𝐊𝛂 	
• Op@mal	solu@on:				

𝜶↑⋆ =	 (𝐊+λ𝐈↓n )↑−1 𝐘	

•  For	large	𝑛	(i.e.	 𝑛≈10↑6 ),	𝐊	does	not	even	fit	in	memory	



Iterative Methods 

•  Since	solu@on	doesn’t	fit	in	memory,	turn	to	itera@ve	methods	
• Classical	methods:	Conjugate-Gradient,	and	Gauss-Siedel	

• We	consider	randomized	block	GS	(block	coordinate	descent)	for	
solving	posi@ve-definite	systems	of	the	form	

𝐀𝛂=𝐲	
• Given	a	current	iterate	

	 (𝛂↓𝑘+1 )↓J = (𝛂↓𝑘 )↓J − 𝐀↓JJ ↑−1 (𝐀𝛂↓𝑘 −𝐲)↓J 	



Sampling in Block GS

Two	reasonable	schemes,	given	a	blocksize	𝑝:	

•  Fixed	Par00on:	Divide	[𝑛] into	blocks	 J↓1 ,…, J↓𝑛/𝑝   blocks	ahead	of	
@me.	During	the	iterates,	randomly	choose	a	block	J↓𝑡↓𝑘  	where	 𝑡↓𝑘 
~Unif({1,…, 𝑛/𝑝 }).	

• Random	coordinates:	At	each	itera@on,	choose	uniformly	from	the	
set	{J∈ 2↑[𝑛] : |J|=𝑝}.	



Sampling in Block GS

Fixed	par@@oning	is	preferable	from	a	systems	perspec@ve	(cache	
locality).	Random	coordinates	suffer	from	slower	memory	accesses.	
Why	use	random	coordinates?	
	
A	simple	example	where	the	sampling	makes	a	large	difference:	take	
𝐀↓𝛽 =𝐈+ β/𝑛 𝟏 𝟏↑T 	
Try	GS	with	𝑛=5000, 𝑝=500,𝛽=1000.	



Sampling in Block GS



Convergence of Randomized GS

To	understand	why	the	behavior	differs,	look	at	the	theory	of	
randomized	GS	
	Theorem.			(Gower	and	Richtárik,	16)	
For	all	𝑘≥0,		

𝔼 ‖𝛂↓𝑘 − 𝛂↓∗ ‖↓𝐀 ≤ (1−µ)↑𝑘/2 ‖𝛂↓0 − 𝛂↓∗ ‖↓𝐀 ,	
where	µ= λ↓min (𝔼[𝐏↓𝐀↑𝟏/𝟐 𝐒 ]).	Here,	the	randomized	column	
selec@on	matrix	𝐒	depends	on	the	choice	of	sampling	scheme.	



Sampling in Block GS

For	our	example		
𝐀↓𝛽 =𝐈+ β/𝑛 𝟏 𝟏↑T ,	


µ↓part = 𝑝/𝑛+β𝑝 	
	
	
µ↓rand = µ↓part + 𝑝−1/𝑛−1 β𝑝/𝑛+β𝑝 	

As	β→∞,	 µ↓part →1/β	whereas	 µ↓rand →𝑝/𝑛.	This	gap	is	arbitrarily	
large.		



Sampling Tradeoffs 

•  Systems	Perspec0ve:	fixed	par@@on	sampling	is	preferable.	Can	
cache	blocks	ahead	of	@me,	replicate	across	nodes,	etc.	Locality	is	
good	for	performance.	

• Op0miza0on	perspec0ve:	random	coordinates	is	preferable.	Each	
itera@on	of	GS	will	make	more	progress.	Locality	is	bad	for	
op9miza9on.	



What about acceleration? 

Add	a	Nesterov	momentum	step	to	the	iterates.	

• Does	the	same	sampling	phenomenon	occur	with	accelera@on?	
• Does	this	provide	the	√µ 	behavior	we	expect?	
	
(Assuming	the	accelera@on	parameters	are	carefully	chosen)	



Prior State of Theory
The	behavior	of	accelerated	fixed-par00on	sampling	is	understood	
	Theorem.			(Nesterov	and	S@ch,	16)	
For	all	𝑘≥0,	accelerated	block	GS	with	fixed-par@@on	sampling	sa@sfies	

𝔼 ‖𝛂↓𝑘 − 𝛂↓∗ ‖↓𝐀 ≾ (1−√𝑝/𝑛 µ↓part  )↑𝑘/2 ‖𝛂↓0 − 𝛂↓∗ ‖↓𝐀 ,	
where	µ↓part = λ↓min (𝔼[𝐏↓𝐀↑𝟏/𝟐 𝐒 ]).	Here,	the	randomized	
column	selec@on	matrix	𝐒	corresponds	to	fixed-par@@on	sampling.	

Thus	fixed-par@@on	sampling	loses	a	factor	of	√𝑝/𝑛 	over	the	ideal	
Nesterov	rate.	



Main Result
Theorem.		
For	all	𝑘≥0,	accelerated	block	GS	with	any	(non-degenerate)	sampling	
scheme	sa@sfies	

𝔼 ‖𝛂↓𝑘 − 𝛂↓∗ ‖↓𝐀 ≾ (1−𝜏)↑𝑘/2  ‖𝛂↓0 − 𝛂↓∗ ‖↓𝐀 .	
Here	𝜏=√µ/ν ,	where	µ	is	as	before	and	ν	is	a	new	quan@ty	which	
behaves	roughly	like	𝑛/𝑝.	

We	prove	this	rate	is	sharp—there	exists	a	star@ng	point	which	
matches	the	rate	up	to	constants.	



Corollaries 
•  For	fixed	par@@on	sampling,	we	can	show	that	𝜈=𝑛/𝑝,	recovering	
Nesterov	and	S@ch’s	earlier	result.	Combined	with	the	sharpness	of	
the	rate,	this	proves	the	√𝑝/𝑛 	loss	over	the	ideal	rate	is	real	for	the	
fixed-par@@on	scheme.	

•  For	random	coordinate	sampling,	we	can	prove	the	weaker	claim	
	
	
If	all	the	size	J	principal	submatrices	of	A	are	sufficiently	well-
condi@oned,	𝜈≈𝑛/𝑝 .	

ν≤ 𝑛/𝑝 max┬|J|=𝑝 
max┬𝑖∈J  𝐀↓𝑖𝑖  /λ↓min 
( 𝐀↓JJ ) 	



Experiment: Accuracy vs Iteration



Experiment: Accuracy vs Time 



Overdetermined Ridge Regression

min┬𝐰   {𝑓(𝐰)= 1/𝑛 ||𝐗𝐰−𝐲||↓2↑2 +𝛾||𝐰||↓2↑2  }	

𝑛×𝑑	

Applica@ons:	
•  Basic	ML	
•  IRLS	for	 ℓ↓2 -penalized	GLMs	
•  Building	block	in	general	

op@mizers	
Two	Perspec@ves:	
•  (Op@miza@on)	Determinis@c	X,	y	
•  (Sta@s@cal)	Determinis@c	X,	

random	y	



Ridge Regression

𝑛×𝑑	

min┬𝐰   {𝑓(𝐰)= 1/𝑛 ||𝐗𝐰−𝐲||↓2↑2 +𝛾||𝐰||↓2↑2  }	

• Ef[icient and approximate solution?
• Use only part of the data?



Ridge Regression

min┬𝐰   {𝑓(𝐰)= 1/𝑛 ||𝐗𝐰−𝐲||↓2↑2 +𝛾||𝐰||↓2↑2  }	

Matrix Sketching:
•  Random selection
•  Random projection



Approximate Ridge Regression

min┬𝐰   {𝑓(𝐰)= 1/𝑛 ||𝐗𝐰−𝐲||↓2↑2 +𝛾||𝐰||↓2↑2  }	

•  Sketched solution: 𝐰↑s 

•   𝑓(𝐰↑s )≤(1+𝜖)min┬𝐰  𝑓(𝐰) 

s: sketch size 	

Optimization Perspective



Approximate Ridge Regression

min┬𝐰   {𝑓(𝐰)= 1/𝑛 ||𝐗𝐰−𝐲||↓2↑2 +𝛾||𝐰||↓2↑2  }	

•  Bias   ‖𝐗w↑⋆ −𝔼 𝐗𝐰↑s 
‖↓2 

•  Variance   𝔼‖𝐗w↑s −𝔼𝐗𝐰↑s 
‖↓2↑2 

Statistical Perspective
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Matrix Sketching

𝐗	 𝐒↑𝑇 𝐗	

• We	consider	only	efficient	sketching	
procedures	
•  Time	cost	is	o(𝑛𝑑𝑠)	—	lower	than	
mul@plica@on.		

•  Examples:	
•  Leverage	score	sampling:	𝑂(𝑛𝑑log 𝑛 )	@me	
•  SRHT:				𝑂(𝑛𝑑log 𝑠 )	@me	



Sketched Ridge Regression

•  Sketched	solu@on:	


            	
•  Time:	𝑂(𝑠𝑑↑2 )+ 𝑇↓𝑠 	

•  𝑇↓𝑠 	is	the	cost	of	sketching	𝐒↑𝑇 𝐗		
•  E.g.	 𝑇↓𝑠 =𝑂(𝑛𝑑log 𝑠 )	for	SRHT.	
•  E.g.	 𝑇↓𝑠 =𝑂(𝑛𝑑log 𝑛 )	for	leverage	score	sampling.	

• Versus	the	@me	for	the	full	RR	problem:	𝑂(𝑛𝑑↑2 )	

𝐰↑s = argmin┬𝐰  {1/𝑛 ||𝐒↑𝑇 𝐗𝐰− 𝐒↑𝑇 𝐲||↓2↑2 +𝛾||𝐰||↓2↑2 }	
= (𝐗↑𝑇 𝐒𝐒↑𝑇 𝐗+𝑛𝛾𝐈↓𝑑 )↑† (𝐗↑𝑇 𝐒𝐒↑𝑇 𝐲)            	



Results: Optimization Perspective



Optimization Perspective

For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= 𝑂 (𝛽𝑑/𝜖 ),	
•  uniform	sampling	with	s=𝑂(𝜇 𝛽𝑑log 𝑑 /𝜖 ),	

𝑓(𝐰↑s )≤(1+𝜖)𝑓(𝐰↑⋆ )	holds	w.p.	0.9.	

•  𝐗∈ ℝ↑𝑛×𝑑 :  the design matrix
•  𝛾: the regularization parameter
•  𝛽= ||𝐗||↓2↑2 /𝑛𝛾+||𝐗||↓2↑2  ∈(0, 1] 
•  𝜇∈[1, 𝑛/𝑑 ]:  the row coherence of 𝐗	 



Optimization Perspective

For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= 𝑂 (𝛽𝑑/𝜖 ),	
•  uniform	sampling	with	s=𝑂(𝜇 𝛽𝑑log 𝑑 /𝜖 ),	

𝑓(𝐰↑s )≤(1+𝜖)𝑓(𝐰↑⋆ )	holds	w.p.	0.9.	

																			 1/𝑛 ||𝐗𝐰↑s −𝐗𝐰↑⋆ ||↓2↑2  ≤ 𝜖𝑓(𝐰↑⋆ ).	

•  𝐗∈ ℝ↑𝑛×𝑑 :  the design matrix
•  𝛾: the regularization parameter
•  𝛽= ||𝐗||↓2↑2 /𝑛𝛾+||𝐗||↓2↑2  ∈(0, 1] 
•  𝜇∈[1, 𝑛/𝑑 ]:  the row coherence of 𝐗	 



Results: Statistical Perspective



Statistical Model

• 𝐗∈ ℝ↑𝑛×𝑑 : [ixed design matrix
•  𝐰↓0 ∈ ℝ↑𝑑 : the true and unknown model
• 𝐲=𝐗𝐰↓0 +𝛅: observed response vector

•  𝛿↓1 , ⋯, 𝛿↓𝑛 	are	random	noise	
•  𝔼[𝛅]=𝟎			and				𝔼[𝛅𝛅↑𝑇 ]= 𝜉↑2 𝐈↓𝑛 	



Bias-Variance Decomposition

• Risk:					𝑅(𝐰)= 1/𝑛 𝔼 ||𝐗𝐰−𝐗𝐰↓0 ||↓2↑2 	
•  𝔼	is	taken	w.r.t.	the	random	noise	𝛅.	



Bias-Variance Decomposition

• Risk:					𝑅(𝐰)= 1/𝑛 𝔼 ||𝐗𝐰−𝐗𝐰↓0 ||↓2↑2 	
•  𝔼	is	taken	w.r.t.	the	random	noise	𝛅.	
•  Risk	measures	predic@on	error.	



Bias-Variance Decomposition

• Risk:					𝑅(𝐰)= 1/𝑛 𝔼 ||𝐗𝐰−𝐗𝐰↓0 ||↓2↑2 	

• R(𝐰)= bias↑2 (𝐰)+var(𝐰)	



Bias-Variance Decomposition

• Risk:					𝑅(𝐰)= 1/𝑛 𝔼 ||𝐗𝐰−𝐗𝐰↓0 ||↓2↑2 	

• R(𝐰)= bias↑2 (𝐰)+var(𝐰)	
•  bias(𝐰↑⋆ )=𝛾√𝑛 ||(𝚺↑2 +𝑛𝛾𝐈↓𝑑 )↑−1 𝚺 𝐕↑𝑇 𝐰↓0 ||↓2 ,	
•  var(𝐰↑⋆ )= 𝜉↑2 /𝑛 ||(𝐈↓𝑑 +𝑛𝛾𝚺↑−2 )↑−1 ||↓2↑2 ,	

•  bias(𝐰↑s )=𝛾√𝑛 ||(𝚺 𝐔↑𝑇 𝐒𝐒↑𝑇 𝐔𝚺+𝑛𝛾𝐈↓𝑑 )↑† 𝚺 𝐕↑𝑇 𝐰↓0 ||↓2 ,	
•  var(𝐰↑s )= 𝜉↑2 /𝑛 ||(𝐔↑𝑇 𝐒𝐒↑𝑇 𝐔+𝑛𝛾𝚺↑−2 )↑† 𝐔↑𝑇 𝐒𝐒↑𝑇 ||↓2↑2 ,	

•  Here	𝐗=𝐔𝚺 𝐕↑𝑇 	is	the	SVD.	

Optimal 
Solution 

Sketched 
Solution 



Statistical Perspective

For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= 𝑂 (𝑑/𝜖↑2  ),	
•  uniform	sampling	with	s=𝑂(𝜇 𝑑log 𝑑 /𝜖↑2  ),	

the	following	hold	w.p.	0.9:	

1−𝜖≤ bias(𝐰↑s )/bias(𝐰↑⋆ ) ≤1+𝜖,	

(1−𝜖)𝑛/𝑠  ≤ var(𝐰↑s )/var(𝐰↑⋆ )  ≤ (1+𝜖)𝑛/𝑠 .	
	

•  𝐗∈ ℝ↑𝑛×𝑑 :  the design matrix
•  𝜇∈[1, 𝑛/𝑑 ]:  the row coherence of 𝐗	 

Good!	

Bad!		Because	𝑛≫𝑠.	.	



Statistical Perspective

For	the	sketching	methods	
•  SRHT	or	leverage	sampling	with	s= 𝑂 (𝑑/𝜖↑2  ),	
•  uniform	sampling	with	s=𝑂(𝜇 𝑑log 𝑑 /𝜖↑2  ),	

the	following	hold	w.p.	0.9:	

1−𝜖≤ bias(𝐰↑s )/bias(𝐰↑⋆ ) ≤1+𝜖,	

(1−𝜖)𝑛/𝑠  ≤ var(𝐰↑s )/var(𝐰↑⋆ )  ≤ (1+𝜖)𝑛/𝑠 .	
	

•  𝐗∈ ℝ↑𝑛×𝑑 :  the design matrix
•  𝜇∈[1, 𝑛/𝑑 ]:  the row coherence of 𝐗	 

If	𝐲	is	noisy		is	noisy	

												variance	dominates	bias	

												𝑅(𝐰↑𝑠 )≫𝑅( 𝐰↑⋆ ).	
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Figure 3: Empirical study of classical sketch and Hessian sketch from statistical perspective.
The x-axis is the regularization parameter � (log-scale); the y-axes are
respectively bias2, variance, and risk (log-scale). We annotate the minimum risks
and optimal � in the plots

Classical sketch and Hessian sketch do not outperform each other in terms of the risk.
When variance dominates bias, Hessian sketch is better in terms of the risk; when bias
dominates variance, classical sketch is better. In the experiment yielding Figure 3, Hessian
sketch had lower risk than classical sketch. This is not generally true: if we used a smaller
⇠, so that the variance is dominated by bias, then classical sketch results in lower risks than
Hessian sketch.

4.4 Model Averaging: Optimization Objective

We use di↵erent intensity of noise—we set ⇠ = 10�2 or 10�1, where ⇠ defined in Section 4.1
indicates the intensity of the noise in the response vector y. We calculate the objective
function values f(wc

[g]) and f(wh

[g]) under di↵erent settings of g, �. We use di↵erent matrix
sketching but fix the sketch size s = 5, 000.

Theorem 8 shows that for large s, e.g., Gaussian projection with s = Õ��d
✏

�

, then

f

�

wc

[g]

�� f

�

w?
�  �

✏
g + �

2

✏

2

�

f(w?), (9)

where � =
kXk2

2

kXk2
2

+n�
 1. In Figure 4(a) we plot g against the ratio

f(wc

[1]

) � f(w?)

f(wc

[g]) � f(w?)
. (10)
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Model Averaging to Reduce Variance 



Model Averaging

•  Independently	draw	𝐒↓1 , ⋯, 𝐒↓𝑔 .	
• Compute	the	sketched	solu@ons	 𝐰↓1↑s , ⋯, 𝐰↓𝑔↑s .	
• Model	averaging:	𝐰↑s = 1/𝑔 ∑𝑖=1↑𝑔▒𝐰↓𝑖↑s  .	



Connection to Bagging

• Bagging	(bootstrap	aggrega@on)	was	proposed	by	Breiman	in	1996	for	
reducing	the	variance	of	the	decision	tree.	
• Bagging	originates	in	decision	tree	methods,	but	it	can	be	used	with	
many	machine	learning	models.	
•  For	ridge	regression,	uniform	sampling	with	model	averaging	is	exactly	
bagging.	
• Our	approach	is	not	limited	to	uniform	sampling.	Random	projec@ons	
and	non-uniform	sampling	outperform	uniform	sampling.	



Optimization Perspective

•  For	sufficiently	large	𝑠,		
𝑓(𝐰↓1↑s )−𝑓(𝐰↑⋆ )/𝑓(𝐰↑⋆ ) ≤𝜖				holds	w.h.p.	

• Using	the	same	sketching	distribu@on	and	𝑠,	
𝑓(𝐰↑s )−𝑓(𝐰↑⋆ )/𝑓(𝐰↑⋆ ) ≤ 𝜖/𝑔 + 𝜖↑2 				holds	
w.h.p.	

Without	model	averaging 

With	model	averaging 



Statistical Perspective

•  For	sufficiently	large	𝑠,		the	following	hold	w.h.p.:	
bias(𝐰↑s )/bias(𝐰↑⋆ ) ≤1+𝜖        and          var(

𝐰↑s )/var(𝐰↑⋆ )  ≤ 𝑛/𝑠  (1+𝜖).	

•  Using	the	same	sketching	distribu@on	and	𝑠,	the	
following	hold	w.h.p.:	
bias(𝐰↑s )/bias(𝐰↑⋆ ) ≤1+𝜖        and          var(𝐰↑s )/
var(𝐰↑⋆ )  ≲ 𝑛/𝑠 (1/√𝑔  +𝜖)↑𝟐 	
	

Without	model	averaging 

With	model	averaging 



Empirical variance reduction

•  If	𝑠	is	large	compared	to	𝑑	and	𝑔	is	larger	than	𝑛/𝑠 ,	then	var(
𝐰↑s )<var(𝐰↑⋆ ).	
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Experiments	on	synthe@c	data.	
•  𝑛= 10↑5 ,	𝑑=500,	𝜅(𝑿↑𝑇 𝑿)= 10↑12 .	
•  Sketch	size	is	𝑠=5000=𝑛/20 .	
•  Regulariza@on	parameter	𝛾= 10↑−6 .	
•  As	𝑔	exceeds	 𝑛/𝑠 =20,	var(𝐰↑s )	can	be	smaller	than	

var(𝐰↑⋆ ).	



Thank You!
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