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Transmission Computed Tomography

May 2014 6/33 P. C. Hanaen: Regularization in Tomography 

The Radon Transform 

The principle in parallel- 
beam tomography: send 
parallel rays through the 
object at different angles, 
measure the damping. 
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The principle in
parallel-beam tomography:
send parallel rays through
the object at different
angles, measure the
damping.
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CT Reconstruction and Segmentation

Measurement

=⇒

Reconstruction

=⇒

Segmentation

Reconstruction methods: FBP, ART, variational methods, etc.

Segmentation methods: thresholding-based methods, level-set
methods, graph-cut methods, etc.
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Discrete Tomography

Measurement

=⇒

Segmentation

Idea: allow only a small number of pixel values

Characteristics: there is no reconstruction

Methods: DART (Batenburg, et al. 2011), etc.
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Simultaneous Reconstruction and Segmentation (SRS)

Reconstruction

⇐=

Measurement

=⇒

Segmentation

Mumford-Shah level-set methods (Ramlau, et al. 2007)

Hidden Markov measure field model (HMMFM)-based methods (Van
de Sompel, et al. 2008)
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Hidden Markov Measure Field Model (HMMFM)

Class 1 · · · Class k · · · Class K

Pixel 1 δ11 · · · δ1k · · · δ1K
...

...
...

...
Pixel j δj1 · · · δjk · · · δjK

...
...

...
...

Pixel N δN1 · · · δNk · · · δNK

δjk denotes the probability of the pixel j belonging to the class k

K∑
k=1

δjk = 1 for all j = 1, · · · ,N

The HMMFM, δ = {δjk}, gives segmentation information
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Our Model

max
x,δ

p(x, δ|b)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, · · · ,N, k = 1, · · · ,K .

x ∈ RN includes the attenuation coefficients of the object for all pixels

b ∈ RM is the measurement

δ ∈ RN×K is the set of probabilities in the HMMFM for each class of
the object and for each pixel

p(x, δ|b) is the posterior probability density function for the image
and the HMMFM with the given data
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Our Model

max
x,δ

p(b|x, δ)p(x|δ)p(δ)

p(b)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, · · · ,N, k = 1, · · · ,K .

p(b|x, δ) = p(b|x) is the probability of obtaining the data b given the
image x; the data does not depend on the segmentation of the image

p(x|δ) is the probability of x given the probabilities of each pixel in
each class

p(δ) expresses our belief in the HMMFM

p(b) is a normalization constant
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Our Model

max
x,δ

log p(b|x) + log p(x|δ) + log p(δ)

s.t.

K∑
k=1
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Data Fitting Term, p(b|x)

The measured data is usually a sum of several terms:

1 Data received from the X-ray illumination of the object, with Poisson
noise

2 Poisson noise of the measuring equipment and from external sources

3 Gaussian noise caused by the electronics and the conversion from an
analog signal to digital data

Assumption: The signal-to-noise level is high enough that we can
approximate the total noise by additive white Gaussian noise N (0, σ2noise)

log p(b|x) = −‖Ax− b‖22
2σ2noise

− 1

2
log(2MπMσ2Mnoise)
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Class Fitting Term, p(x|δ)

Assumption:

1 The object is composed of a set of K different phases, and each
phase has the similar attenuation coefficient everywhere. Here, K is
given and K << N

2 The distribution of the attenuation coefficients within a class is
Gaussian with mean value µk (the expected attenuation coefficient)
and a small standard deviation σk . All µk and σk for k = 1, · · · ,K
are known

p(x|δ) =
N∏
j=1

p(xj |δj) =
N∏
j=1

K∑
k=1

p(xj |class = k)p(class = k |δj)

=
N∏
j=1

K∑
k=1

δjk
1√

2πσk
e
−

(xj−µk )
2

2σ2
k
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Regularization Term, p(δ)

In regularization term, we specify the prior knowledge about the behavior
of the segmentation.

log p(δ) = −
K∑

k=1

R(δk)

where δk = {δ1k , · · · , δNk} is the set of probabilities for class k .

RTV(δk) =
∑N

j=1

(
(δjk − δj ′k)2 + (δjk − δj ′′k)2

) 1
2

Allow discontinuities in the probabilities for the classes associated
with neighboring pixels

RTik(δk) =
∑N

j=1

(
(δjk − δj ′k)2 + (δjk − δj ′′k)2

)
Enforce the smoothness of the probabilities among the classes
associated with neighboring pixels
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Full Model

min
x,δ

λnoise‖Ax− b‖22 + λclass

K∑
k=1

R(δk)

−
N∑
j=1

log

 K∑
k=1

δjk
1√

2πσk
e
−

(xj−µk )
2

2σ2
k


s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, · · · ,N, k = 1, · · · ,K .

λnoise and λclass are positive regularization parameters

The model is non-convex

The objective function is convex w.r.t δ, but non-convex w.r.t x
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Simplification
Non-convexity: For each pixel, it is a multi-modal function, which
consists of a sum of Gaussian functions.

Idea: We approximate this multi-modal function by a single Gaussian
function, i.e.,

− log p(x|δ) =
N∑
j=1

(xj − µnewj )2

2(σnewj )2
.

First, we use a relatively flat Gaussian function to roughly approximate the
original model. When we are close to the solution, we expect that most of
the pixels clearly belong to one specific class, then we switch to a sharp
Gaussian function to approximate the original model.
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Simplification

Stage 1: We set for j = 1, · · · ,N

µnewj =
K∑

k=1

δjkµk , (σnewj )2 =
K∑

k=1

δjk(σ2k + µ2k)− (µnewj )2

Stage 2: We set for j = 1, · · · ,N

δjk =

{
1, ifk = kj
0, otherwise

, µnewj = µkj , σnewj = σkj
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Algorithm

Initialization: δ0jk = 1
K for all j , k and x0 = 0

Stage 1:
I For n = 1, · · · , n1

1 Calculate µn
j = µnew

j and σn
j = σnew

j in order to obtain the “flat”
Gaussian simplification

2 Update xn = arg minx λnoise‖Ax− b‖22 +
∑N

j=1

(xj−µn
j )

2

2(σn
j )

2

by the CGLS algorithm with initial guess xn−1

3 Update

δn = arg minδ λclass

∑K
k=1 R(δk)−

∑N
j=1 log

(∑K
k=1

δjk√
2πσk

e
−

(xnj −µk )
2

2σ2
k

)
subject to

∑K
k=1 δjk = 1 and δjk ≥ 0 for all j , k

by the iterative Frank-Wolfe algorithm with initial guess δn−1

Stage 2:
I For n = n1 + 1, · · · , n1 + n2

Similar as Stage 1, but with µn
j = µkj and σn

j = σkj in order to
obtain the “sharp” Gaussian simplification for image update step
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The Test Problems

Phantoms: Shepp-Logan,
binary and porous phantoms
with128-by-128 pixels

Parallel beam tomography

Angles: 58

Parallel rays: 181

Underdetermined rate:
M
N = 0.6

Noise Level: 1%
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FBP→Seg TV→Seg SRS-Tik SRS-TV Exact

x
s

|x
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a
ct
−
x|

I(
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ct
6=
s)
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Error Comparison

εrec =
‖xexact − x‖2
‖xexact‖2

εseg =
1

N

N∑
j=1

I (sexactj 6= sj)

Test problem FBP→Seg TV→Seg SRS-Tik SRS-TV

1: Shepp-Logan
εrec 0.34 0.038 0.021 0.023
εseg 0.056 0.0038 0.0026 0.0031

2: Binary
εrec 0.46 0.33 0.18 0.26
εseg 0.096 0.035 0.015 0.029

3: 4-class
εrec 0.39 0.16 0.047 0.055
εseg 0.38 0.077 0.0057 0.0064

4: Gray-scale
εrec 0.24 0.082 0.060 0.087
εseg 0.095 0.0040 0.0047 0.0041
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Reconstruction and Segmentation Error Historises

εrec εseg

Table : The evolution of εrec and εseg during the iterations of the SRS-Tik
algorithm on the Shepp-Logan phantom
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Real Data

TV→Seg (α=0.06) TV→Seg (α=0.12) SRS-Tik
x

s
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Conclusion

The classical approach with two separate steps only uses the prior
knowledges on classes in the segmentation step. But simultaneous
image reconstruction and segmentation method also incorporates
such prior in order to increase the quality of the reconstruction

Due to the communication of reconstruction and segmentation, we
are able to produce sharp edges in the reconstruction and obtain high
accuracy on the segmentation

Future work
I More efficient algorithms in order to deal with large-scale tomographic

problems
I Image regularization term in order to further improve the reconstruction
I Parameter selection methods
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Thank you!
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