Topological dynamics in the membrane of a living cell

Pearson Miller, Tzer Han Tan, Jinghui Liu, Melis Tekant, Jörn Dunkel, Nikta Fakhri Massachusetts Institute of Technology

The Chemical Basis of Morphogenesis

How do organisms know how to form complex spatial structures?

Reaction-Diffusion $\partial_t \boldsymbol{q} = \boldsymbol{D} \nabla^2 \boldsymbol{q} + \boldsymbol{R}(\boldsymbol{q})$

Chemical pattern formation coordinates mechanical growth

(Image from Center for Genomic Regulation)

Reaction-diffusion waves in starfish oocytes

Jinghui Liu

Tzer Han Tan Melis Tekant

Experiments: *In vivo* self-sustained biochemical wave Rho-GTP patterns on oocyte membrane

Analyze steady state Rho-GTP waves with reconstructed phase field

Spiral waves as topological defects

Time (s)

Scale bar: 10 µm

Global analysis: Defects in phase field could be mapped to vortices in phase velocity field

Local analysis: Self-sustained Rho-GTP wave patterns exhibit generic vortex-vortex interaction

A minimal Helmholtz-Onsager point-vortex model correctly captures Rho-GTP waves vortex statistics

Could statistical laws from passive systems apply for vortex-vortex interaction in Rho-GTP waves?

A minimal Helmholtz-Onsager point-vortex model correctly captures Rho-GTP waves vortex statistics

Could statistical model from passive systems apply for vortex-vortex interaction in Rho-GTP waves?

In vivo Rho-GTP waves can be understood in terms of generic 2D vortex-vortex interaction at criticality

Interpretation: At criticality, model vortices are randomly distributed over domain.

Consistent scaling suggest absence of effective independence of spirals

Our analysis revealed a class of topological defect dynamics underlying *in vivo* Rho-GTP wave patterns

- Our analysis revealed a class of topological turbulence underlying *in vivo* Rho-GTP wave patterns
- Rho-GTP waves are tuned to different "states" in phase space when varying GEF level

0 s

- Our analysis revealed a class of topological turbulence underlying *in vivo* Rho-GTP wave patterns
- Rho-GTP waves are tuned to different "states" in phase space when varying GEF level
- Minimal model suggests a near-critical organization for *in vivo* membrane waves

Energy

Our analysis revealed a class of topological turbulence

Future Directions:

- Effects of non-uniform geometry on wave patterns?
- Active deformation: is there chemo-mechanical feedback?
 - Continuum models: can we derive observed scaling behavior?

$$H = -\frac{1}{2\pi} \sum_{i,j} I_i I_j \ln|\vec{r}_i - \vec{r}_j|$$

Acknowledgements

- Tzer Han Tan

Jinghui Liu

Melis Tekant

Prof. Jörn Dunkel

Please send us feedback!

TH Tan¹, J Liu¹, PW Miller¹, M Tekant, J Dunkel^{*}, N Fakhri^{*} 2019. (Submitted)

Spiral Waves on a Changing Domain

Spiral Waves on a Changing Domain

