Slow Modulation & Large-Time Dynamics
Near Periodic Waves

Miguel Rodrigues
IRMAR

Université Rennes 1
France

SIAG-APDE Prize Lecture

Jointly with Mathew Johnson (Kansas), Pascal Noble (INSA Toulouse),
Kevin Zumbrun (Indiana). Formerly Lyon/Indiana.

Part of a larger project also including Blake Barker (Brown).

L.M. Rodrigues (Rennes 1) About periodic waves SIAM PD’15 0/23



Outline.

@ Motivation
@ Model result
@ Some surface waves

© Structure of the spectrum
© Dynamical stability
@ Averaged dynamics

© Conclusion

L.M. Rodrigues (Rennes 1) About periodic waves



Outline.

@ Motivation
@ Model result

© Structure of the spectrum
© Dynamical stability
@ Averaged dynamics

© Conclusion

L.M. Rodrigues (Rennes 1) About periodic waves



Ordinary differential equations.

F : R” — R" smooth.
U: Ry — R” solving

U; = F(U) and U(0)=Up.

Steady solution, 0 = F(U).
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Ordinary differential equations.

F: R" — R" smooth.
U: Ry — R” solving

U = F(U) and U(0)=Uo.
Steady solution, 0 = F(U).

Stability
Vo >0, de > 0,

d(Ug,U)<e = (U and (Vt>0, d(U(t),U) < 6)) .

Asymptotic stability
Stability + Je¢ > 0,

d(Up,U) <co = (H!U and d(U(t),g)ti>°°o>.
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From the spectrum to the nonlinear dynamics.

Spectral stability

o(dF(U)) € {\ | ReA < 0}.

Theorem

Spectral stability implies asymptotic stability.
Decay is exponentially fast.
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From the spectrum to the nonlinear dynamics.

Spectral stability

o(dF(U)) € {\ | Re < 0}.

Theorem

Spectral stability implies asymptotic stability.
Decay is exponentially fast.

Goal : PDE version for periodic plane waves.
U: R, x R = R solving

U; = F(U,U,,---) and U(0,-) = Uo(:).
@ Adapted notion of nonlinear stability for periodic waves.
@ Adapted notion of spectral stability, depending on the PDE type.
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Roll-waves in thin films.

In a channel. The Saint-Venant system (SV)

Courtesy of Neil Balmforth (British Columbia).

he + (hu)x =0,

h?
24
(hu): + (hu +2F2)X

= h—|ulu+ (hug)x.

F > 2, primary instability.
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Roll-waves in thin films.

In a channel. The Saint-Venant system (SV)

Courtesy of Neil Balmforth (British Columbia).

he + (hu)x =0,

h?
24
(hu): + (hu +2F2)X

= h—|ulu+ (hug)x.

F > 2, primary instability.

The Korteweg-de Vries/Kuramoto-Sivashinsky equation (KdV-KS)

Ur + (3U%), + Uxxx + 6(Uxx + Uxxxx) = 0.
Near threshold, § ~ /F — 2.
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About a wave.

t > 0 time, x € R space, U(x, t) € RY unknown. f smooth.

Traveling wave. U(t, x) = U(x — ct) moving with speed c.

Profile U solving — cUyx + (f(U))x = Ux.
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About a wave.

t > 0 time, x € R space, U(x, t) € RY unknown. f smooth.

Traveling wave. U(t, x) = U(x — ct) moving with speed c.

Profile U solving — cUyx + (f(U))x = Ux.

Generator
L= 82 + cdy — Dxdf (V) J

in the frame of the wave.
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Integral transform.
Bloch-wave decomposition

g(x) = / el (&, x) de,

—Tr

where £ is a Floquet exponent
g(&x+1) = &(&x),

SO (g, x+1) = e e g(£,x),
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Integral transform.
Bloch-wave decomposition

g(x) = / " (e, %) dt, J

—Tr

where £ is a Floquet exponent
g(&x+1) = &(&x),

SO (g, x+1) = e e g(£,x),

From the Fourier decomposition
g0 = [ & ge)de.
Floquet-Bloch transform

g(&,x) - Z el ¥™ B¢ + 2jmr) = Z e €K g(x 4+ k).

Jjez keZ
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First observations.

—T

h(x) = / " gitx h(¢, x) de. J

Observations
(gh) (&, x) = g(x) fvr(f, x), g of period 1,
(0xh)™ (&) = (O« +1i8) h(E, ),

h(&x) = 77\({), h low-frequency.
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First observations.

h(x) = /_ " gitx h(¢, x) de. J

Observations
(gh)" (&, x) = g(x) fvr(ﬁ,x), g of period 1,
(Och)" (&) = (O +1€) A&, ),

h(&x) = F(f), h low-frequency.

Remark : If g is of period 1 and h is low-frequency

(gh)" (&%) = g(x) (). J

L.M. Rodrigues (Rennes 1) About periodic waves SIAM PD’15 6 /23



Bloch symbols.

U(t,x) = U(k(x — ct)), U of period 1.

Generator

L= k* 03 + k ¢ — k 0xdf (V) }

with Bloch symbols

Le = k? (Ox +1€)* + k (0« +i€)(c — df(V)), € € [-m,7].

Bloch diagonalization

(Lew) = [ & (Lete N de.

—T

Each L¢ acts on functions of period 1.
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Diffusive spectral stability.

Spectral decomposition

ol) = U operlle):

ge[—m,m]
o1 . (D1) Critical spectrum reduced to {0}.
o(L) © {A | ReA < 0} U {0}.
5 ( ' ) q (D2) Diffusion. 30 > 0, V¢ € [—m, 7],
o - oper(Le) C {A | Red < —0|¢[*}.
Tl L S (D3) A= 0 of multiplicity d + 1
for Lo (minimal dimension).
Spectum of a stable wave (H) Distinct group velocities

Of (SV) Barker-Johnson-Noble-LMR- (StI’ICt hyperbOhCIty)

Zumbrun, Proc. Port-d’Albret 2010.
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Direct simulation : space-time diagramm.

Peaks.
About a stable wave of (KdV-KS). Troughs
Barker-Johnson-Noble-LMR-Zumbrun, Phys. D 2013. Theory

%

“

08)15 T g
= | . . 4
0

5 T t‘gb i id

140 160 180 200
X
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Space-modulation of distances.
Allow for resynchronization by comparing functions with

op(u,v) = infJuoW — vy + [|0(V — Tdr)(3 -

WV one-to-one

U reference wave.

1
t— =
U(E )~ Uy 2 o 2P |
while, in a diffusive context,
1
(Ut ), U) 0 o201 ]

SIAM PD’15 10 / 23
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Nonlinear diffusive stability.

Theorem (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)
A diffusively spectrally stable periodic wave of (P) is

5L1(R)HHK(R) to 6HK(R)

asymptotically stable when K > 3, with algebraic decay rates.
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Elements of proof : introducing the phase.

Seek for (V, %) with (V,0y1)) small and such that

V(t,) = U(t,) o (Idr —9(t,-)) — U.
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Elements of proof : introducing the phase.

Seek for (V, %) with (V, 0x1) small and such that

V(t,) = U(t,) o (Idr — (¢, ) — U.

Equation

(0 = L) (V(2) + U, (1)) = N(t).
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Elements of proof : introducing the phase.

Seek for (V, %) with (V, 0x1) small and such that

V(t,) = U(t,) o (Idr — (¢, ) — U.

Equation

(0 = L) (V(t) + U, 0(1)) = N(t).

Integral formulation

V(e) + U,(0) = S(0) (VIO)+ Uye) + [ St - )N (s)ds,

with S(t) := etl.
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Isolating the phase.

Separation

5(t) = U, s°(t) + 5(t)

U(t) = s°(t) (Vo + U,tho) + /0 t5¢(t—s)/\/'(s)ds

V() = 5(0)(Vo+Uo) + | 5t - )M (s)ds
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Isolating the phase.

Separation

5(t) = U, s°(t) + 5(t)

GO = S0 (Vo + ) + | "9t — )N (s)ds

() [sm) (Vo+ U)o + | ot sw(s)ds]

V() = 5(0)(Vo+Uo) + | 5t — )M (s)ds

+ x(t) U, [s‘ﬁ(t) (Vo + U, o) — vo + /Ot sO(t — s)/\/’(s)ds]

with x cutting off large times.
SIAM PD'15 13 /23



Isolating the phase.

Separation

5(t) = U, s°(t) + 5(t)

wﬂzsﬂmw+gwwﬂim—$wms

- x(t) [5¢(t) (Vo + U,bo) — o + /Ot sP(t — s)/\/(s)ds]

vm::QMW+Q%HAEWwW@¢

+ x(t) U, [s¢(t) (Vo + U, o) — vo + /Ot sO(t — s)/\/’(s)ds]

with x cutting off large times.
SIAM PD'15 13 /23



Critical evolution.

Expand
d+1

% S O (e, ) (Fale )] )
- a=1

with

Yal€) = U()BE) + 0
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Critical evolution.

Expand
1 S o 7
e ; e™ ™ Ya(€5 ) (@al& o)l )
with
%z(fa') = QX()/B(Q)(g) + O(é)
to
dil , ) o
U0 3 (g € 59O dale )| ) + O,
a=1 -
Decomposition
S(t) = U, s*(1) + 5(1) J
d+1
with s?(t) = > s(t).
a=1
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Bounds.

@ Bloch analysis.

Hausdorff-Young inequalities
For 2 < p < oo,

g llee(r) ”a‘;’”Lp’([_wm],Lp([o,l])) )

”gHLP([—7r,7r],LP'([O,1])) ||g”LP’(R) ’

One estimate
Yo(—o00) = —1)p(00). For t >0, 2 < p < o0,

@ Energy estimates
and resolvent estimates in a Hilbertian framework.
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Oxse(t)(1o U,)

< —3(1-1/p)
Le(R) ~ (1+1t)2 [|0xtoll L1 (R) -
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Parametrization.

At fixed k wavenumber,
U(t,x) = U(k(x — ct))

with U of period 1 determined by averaged values M:= (U).
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Parametrization.

At fixed k wavenumber,
U(t,x) = U(k(x — ct))

with U of period 1 determined by averaged values M:= (U).

Profile : U = UM% Phase velocity and time frequency

c=c(M,k),  w(M,k)=—kc(M, k).
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Two-scale ansatz.

‘“Two-timing’ method. Fast oscillation/slow variation.

v v

U(t,x) = (Uo + el +£%U,) ( et , EX , (Wo+e 81)(5t,5x) )—1—0(52)
T X ~-
0

with Ug, Uy and U, of period 1 in 6.
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Slow modulation behavior.

(Uo +U1)(T, X,0) = u((Mo,noHe(Ml,m))(T,X)(9) + ofe)

with
ko +er1 = (Wo+eWq)x local wave number,

Mo + eM;y local averages.
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Averaged dynamics : matching with slow evolution.

Evolution of (Mo, ko), (M1, k1) coincide with expansion of slow ansatz

(MR)(x,8) = (Mo, ko) +e(Ma,kn) ) (( 2Ly 2x ) + o(e?)

into T X

(W) { M + (F(M,H))X = (d11(M,/€)MX+dlz(M,IQ)HX)X,
ke — (WM, R))x = (don(M, k) My + doo(M, K)Ex)x-

L.M. Rodrigues (Rennes 1) About periodic waves SIAM PD’15 19 / 23



Averaged dynamics : matching with slow evolution.

Evolution of (Mo, ko), (M1, k1) coincide with expansion of slow ansatz

(MR)(x,8) = (Mo, ko) +e(Ma,ka) ) (2L, x ) + o(e?)

into T X

(W) { M + (F(M,H))X (d11(M,/€)MX+dlz(M,IQ)HX)X,
ke — (WM, R))x = (don(M, k) My + doo(M, K)Ex)x-

(W)phase u)‘1.‘ - W(Myﬁ) - d21(M7/€)Mx + d22(M7"Q)Hx .
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Averaged dynamics : matching with slow evolution.

Evolution of (Mo, ko), (M1, k1) coincide with expansion of slow ansatz

(MR)(x,8) = (Mo, ko) +e(Ma,ka) ) (2L, x ) + o(e?)

into T X

(W) { M + (F(M,IQ))X = (d11(M,/€)MX+dlz(M,IQ)HX)X,
ke — (WM, R))x = (don(M, k) My + doo(M, K)Ex)x-

(W)phase u)‘1.‘ - W(My /i) - d21(M7 H)Mx + d22(M7 "Q)Hx .
| shall hide a choice leading to a canonical artificial viscosity system.
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Asymptotic behavior, refined description.

Theorem (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)
Let 7 > 0 and K > 4. There exists € > 0 and C > 0 such that if

Ey = ||U0 o (IdR = ¢0) = Q”Ll(R)ﬂHK(R) + ||ax7/}0||L1(R)ﬂHK(R) < €

for some ),
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Asymptotic behavior, refined description.

Theorem (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)
Let 7 > 0 and K > 4. There exists € > 0 and C > 0 such that if

Ey = ||U0 o (IdR = ¢0) = Q”Ll(R)ﬂHK(R) + HaxwonLl(R)ﬂHK(R) < €

for some g, then, there exist (U, ) with initial data (Ug, 10) and M
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Asymptotic behavior, refined description.

Theorem (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)
Let 7 > 0 and K > 4. There exists € > 0 and C > 0 such that if

Ey = ||U0 o (IdR — ¢0) = QHLl(R)ﬂHK(R) + ||ax7/}0||L1(R)ﬂHK(R) < €

for some g, then, there exist (U, 1) with initial data (Uog, 1) and M such
that, for t > 0 and 2 < p < oo,

k
UG, = (e, ) — WEEMEIT=IET) ()

Blw

IN

CE In(2+1t) (1+1)"

(M, k)8, Mlrry < C Eo (14 1) 2(1-1/9)
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Asymptotic behavior, validation of (W).
Theorem (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)
Moreover, setting W(t,-) = (Idgr — ©(t,-)) "}, &k = kOyV,

M(t,) = (M +M(t,-)) o W(z, ),
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Asymptotic behavior, validation of (W).
Theorem (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)
Moreover, setting W(t,-) = (Idgr — ¥(t,-)) 7}, k = k Oy,

M(t,) = (M + M(t,)) 0 W(t,),
and letting (M, k) and Wy solve (W) and (W)ppase with initial data
kw(0,:) = koxV(0,), Wy (0,)) = w(0,-),
Mw(0,:) = M+Uy—UoW(0,-)

(OX\IJl(O,) _ 1) (Uov(0,-) — M),

L.M. Rodrigues (Rennes 1) About periodic waves SIAM PD’15 21 /23



Asymptotic behavior, validation of (W).
Theorem (Johnson—NobIe—Ll\/IR—Zumbrun, Inventiones Math. 2014.)
Moreover, setting W(t,-) = (Idgr — ¥(t,-)) 7}, k = k Oy,
M(ta ) = (M+ M(t’ )) © w(ta ')'
and letting (M, k) and Wy solve (W) and (W)ppase with initial data
K/W(OF) = Kaxw(oa ')7 \UW(07) = W(Oa)a
Mw(0,-) = M+Ug—UoWV(0,-)

<8X\U;(O,) _ 1) (Uow(0,-) — M),

we have, for t >0, 2 < p < oo,

(M, E)(t,-) = (Mw, sw)(t, )Ry < CEo (1+ t)~z(1-1/P)—3+n,
[W(t,") = Vw(t, )lwewry < CEo (1+ t)~2(-1/e)n,

SIAM PD'15 21/ 23



Corollaries when 1y = 0.

Question : Could we get usual asymptotic stability in some special cases?

Roadmap : look at uncoupling of

ke — (WM,K))x = (doa(M, )My + daa(M, K)Ex)x-

L.M. Rodrigues (Rennes 1) About periodic waves SIAM PD’15 22 /23



Corollaries when 1y = 0.

Question : Could we get usual asymptotic stability in some special cases?

Roadmap : look at uncoupling of

Kt — (w(/\/l,n))x = (dzl(M,/'i)Mx-l-dQQ(M,H)HX)X.

Quadratic phase uncoupling

duw(M, k) =0  and  d{w(M, k) = 0.

Corollary (Johnson—Noble—LMR—Zumbrun, Inventiones Math. 2014.)

Jointly with previous assumptions this implies asymptotic stability
from | llxrynmx Ry to |- ax(R)-

with decay (1 + t)_%(l_l/p)_%”’ in LP(R), 2 < p < 0.

v
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Corollaries when 1y = 0.

Question : Could we get usual asymptotic stability in some special cases?

Roadmap : look at uncoupling of

Kt — (w(M,m))X = (dzl(M,H)Mx-l-dQQ(M,FJ)HX)X.

Linear phase uncoupling

dmw(M, k) = 0.

Corollary (Johnson—NobIe—LMR—Zumbrun, Inventiones Math. 2014.)

Jointly with previous assumptions this implies asymptotic stability
from || - [[a@rae-pnacw)y 0 k)

with decay (1 + t)_%(l_l/”)*%“’ in LP(R), 2 < p < 0.

4
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Open questions.

@ Verification of spectral assumptions : case-by-case.
@ Space-modulated instability.

@ Genuinely multidimensional periodic waves.

e Dispersive nonlinear stability (not on a torus).

e Composed patterns.
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Bonus 1 : diffusive instability.

0
1400 1500 1600 1700 1800 1900 2000
X

Failure of diffusivity in (KdV-KS).
Barker-Johnson-Noble-LMR-Zumbrun, Phys. D 2013.
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Bonus 2 : nonlinear dynamics of (KdV).

LMR, in preparation.

Right : graph of the full solution.
Left : perturbation seen from above.
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Bonus 3 : a dispersive shock in (KdV).

A 2-rarefaction wave
of the averaged system.

LMR, in preparation.
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