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Quick intro - learning and decision theory
n Classification - learn a function f that predicts one of 

C discrete categories (class label) from a feature 
vector:

n Regression - learn a function f that predicts a scalar 
value (target) from a feature vector:

n In both cases these are approximation to an 
unknown “real-world” function F that generates 
features and labels/targets.
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f(x) : RD ! R1

⌦ = {!1, . . . ,!C}

f(x) : RD ! ⌦



Empirical risk minimisation
n We want to learn model parameters that minimise 

the risk of making an erroneous predictions
n but the real joint distribution of features and class labels 

or regression targets “in the world” is unknown
n so we must approximate the “real” risk by the empirical 

risk: the average error or loss on the training sample:

n l() is a loss function, penalising bad predictions
n Many loss functions can be used; a very common 

one for classification is 0-1 (or symmetrical) loss:
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R(f,X) =
1

N

X
l(�n, f(xn))

�n 6= f(xn)

l01(!n, f(xn)) =

⇢
0 !n = f(xn)
1 !n 6= f(xn)



Training, testing, and overfitting
n Minimising the risk functional on the training set will 

encourage you to use more complex models and is not a 
guarantee of good generalisation

n In practice, we minimise risk while penalising more 
complex models (regularisation):
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Rr(f,X,�) = R(f,X) + �||f ||2



Bias, variance, and stability
n The bias-variance 

tradeoff applies in 
predictive models:
n We can decrease 

prediction error arbitrarily 
on a given dataset, thus 
yielding low bias.

n However, this 
systematically comes at a 
price in variance: the 
parameters of f can 
change a lot if the training 
set varies. This instability 
can actually be exploited
in ensembling.

7[Duda et al, 2001]
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n To have some confidence in our performance 
estimate we must learn (train) the model on one 
dataset, and evaluate it on another dataset
n If we don’t do that, it is hard to substantiate claims of 

generalisation
n The error rate on the training set (resubstitution error) 

can be made arbitrarily small... just use a complex 
model

n Remember our goal: predict unseen data.
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n To have some confidence in our performance 
estimate we must learn (train) the model on one 
dataset, and evaluate it on another dataset
n If we don’t do that, it is hard to substantiate claims of 

generalisation
n The error rate on the training set (resubstitution error) 

can be made arbitrarily small... just use a complex 
model

n Remember our goal: predict unseen data.
n Maintain strict train/test separation throughout the 

processing
n Don’t select voxels on the whole dataset !
n Always ask yourself: what would I do if I acquired data 

for one more subject after my model is trained? 



Hold-out technique
n Split the data into 2 or 3 parts
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n This makes sub-optimal use of the data available
n Pessimistic bias



M-fold cross-validation technique
Split in folds, then train classifier...

...and evaluate it

Rotate partitions and repeat

Ultimately test (once)
Applies to scans, blocks, subjects

training

feature 1

feature 2
decision 

boundary

evaluation

correct

error

test

...



Nested cross-validation
n If we need to tune the classifier (typically the 

regularisation parameter λ) or select features, we 
must maintain train/test separation!
n Add a nested cross-validation loop within the main 

loop

n Not doing this is a surprisingly common mistake
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...

...

outer
fold 1

outer
fold 2

inner
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...

...

tune parameter 
here, retain
the best one, and 
apply to outer fold 
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Confusion matrix
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n Accuracy statistics can be shown in a confusion 
matrix (summary table):
n Class 0 accuracy (p0) = A/(A+B)
n Class 1 accuracy (p1) = D/(C+D)
n Accuracy (p) =  (A+D)/(A+B+C+D)
n With 0-1 loss, we have 

n Biostats (ω0 =healthy, ω1 =disease): 
n sensitivity (“What is the probability that the disease is PRESENT 

and that I detect it?”): D/(C+D) = TP/(FN+TP)
n specificity: (“disease is ABSENT and I report no disease”: A/(A+B) 

= TN/(FP+TN)

Confusion matrix
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n Accuracy statistics can be shown in a confusion 
matrix (summary table):
n Class 0 accuracy (p0) = A/(A+B)
n Class 1 accuracy (p1) = D/(C+D)
n Accuracy (p) =  (A+D)/(A+B+C+D)
n With 0-1 loss, we have 

n Biostats (ω0 =healthy, ω1 =disease): 
n sensitivity (“What is the probability that the disease is PRESENT 

and that I detect it?”): D/(C+D) = TP/(FN+TP)
n specificity: (“disease is ABSENT and I report no disease”: A/(A+B) 

= TN/(FP+TN)

n Perfect: B=C=0. Be suspicious if this happens!

Confusion matrix
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n Accuracy statistics can be shown in a confusion 
matrix (summary table):
n Class 0 accuracy (p0) = A/(A+B)
n Class 1 accuracy (p1) = D/(C+D)
n Accuracy (p) =  (A+D)/(A+B+C+D)
n With 0-1 loss, we have 

n Biostats (ω0 =healthy, ω1 =disease): 
n sensitivity (“What is the probability that the disease is PRESENT 

and that I detect it?”): D/(C+D) = TP/(FN+TP)
n specificity: (“disease is ABSENT and I report no disease”: A/(A+B) 

= TN/(FP+TN)

n Perfect: B=C=0. Be suspicious if this happens!
n Random: A=B=C=D. Same as flipping a coin.

Confusion matrix
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Balance in datasets
n If the classes don’t all have the same number of 

examples
n The classifier may sacrifice performance on the 

minority classes to improve on the majority class
n Accuracy may seem to be above chance whereas the 

minority classes are sacrificed and below chance
n A common strategy is to subsample the majority 

class, but data is lost
n Reporting class accuracies (p0,..., pC) is good practice
n Balanced accuracy is computed as
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pbal =
1

C

X
pc



‘Soft’ versus ‘hard’ classifier outputs
n Many classifiers first compute a “soft” function value

n Then “hard” decisions are taken by a simple function

n Both g() and f() contribute to accuracy figure
n f() defines the decision boundary or threshold
n Typically not much choice - it’s built in

n looking at g() output is informative
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f(g(x)) := sgn(g(x))

f(g(x)) : R1 ! ⌦

g(x) : RD ! R1



Sensitivity / specificity trade-off
n For a fixed classifier, increasing sensitivity can 

only come at the cost of decreasing specificity, 
and vice-versa.
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Graphical representations: the ROC curve
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classifier 1 − AUC 0.79
classifier 2 − AUC 0.74

n We can compute the 
Area Under Curve 
(AUC) as a summary 
measure of 
performance
n AUC = 1.0: perfect
n AUC = 0.5: chance

n The Receiver Operating Characteristic (curve) is a 
good way of seeing the sens/spec tradeoff over the 
operating range of a classifier.
n It is also used for classifier

comparison (with caution
if lines cross !)
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Mean squared error
n One of many ways to quantify error
n LOO error in one fold

n Across LOO folds:

n This is exactly the same as used in classical 
inference (although we will have lost some efficiency 
due to the cross-validation), except we quantify out-
of-sample MSE

n Models with lower MSE predict better
20

R(f,X) = MSE =
1

N

NX

n=1

(yn � f(xn))
2

SEn = (yn � f(xn))
2



Correlation of prediction with targets
n Correlation coefficient

(across folds, depends
on CV)
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Sfy =
X

n

(yn � ȳ)(f(xn)� f̄(x))

rfy =
Sfyp
SyySff

Sff =
X

n

(f(xn)� ¯f(x))2

Syy =
X

n

(yn � ȳ)2

rfy

n note r2fy = R2
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Parametric confidence intervals
n Parametric tests imply assumptions

n IID samples
n but! Correlation between scans

n  
n Wilson Binomial score test

n Model decisions in two-class classification as a binomial 
distribution. Accuracy = “probability of success”

n Works well for small (<40) and large n.
n Confidence intervals at 95% (but coverage probability 

can be impacted by violated assumptions)
n Closed-form expression -> fast
n gives upper and lower bounds, e.g. 40/60 subjects 

classified = 66.7% pointwise, 5% CI [54.1% 77.3%]
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Non-parametric: permutation testing
n No hypotheses on data distribution
n H0: “class labels are non-informative”
n Test statistic: CV accuracy
n Estimate the distribution

of the test statistic
under H0 by randomly
permuting labels M 
times, and running
a full CV experiment

n p-value: 
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Comparing classifiers
n “Is classifier θA better than classifier θB?”
n Hypothesis testing framework! “Do the two sets of 

decisions of classifiers θA and θB represent two 
different populations?”

n Careful: Samples (sets of decisions) are dependent 
(same evaluation/testing dataset), and measurement 
type is categorical binary (for a two-class problem)

n ⇒Use McNemar test. H0: “there is no difference 
between the accuracies of the two classifiers”

25

test sample

θA

θB

1 2 3 4 5 6 7 8 9 10
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘

✔ ✔ ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘



n Compute relationships between classifier decisions

n If H0 is true, we should have N01 = N10 = 0.5(N01+N10)
n We can measure the discrepancy between this and 

observed counts using the statistic:

n Then compare x2 to critical value of χ2 at a level of 
significance α.

McNemar Test
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θB ✔ θB ✘

θA ✔ N11 N10

θA ✘ N01 N00

After [Dietterich, 1998]

x

2 =
(|N01 �N10|� 1)2

N01 +N10
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