Performance evaluation of
multivariate predictive models In
neuroimaging

Jonas Richiardi

https://www.stanford.edu/~richiard

S UNIVERSITE
/' DE GENEVE

Dept. of Neuroscience

0
0
=° wz
<q.
GE

PRANI@QHBM2015


http://people.stanford.edu/richiard
http://people.stanford.edu/richiard

Agenda

= Principles
= Algorithms for estimating performance

= Point estimates of classification
performance

= Point estimates of regression
performance

= Confidence intervals



Agenda

= Principles
= Algorithms for estimating performance

m Point estimates of classification
performance

= Point estimates of regression
performance

® Confidence intervals



Quick intro - learning and decision theory

= (Classification - learn a function f that predicts one of
C discrete categories (class label) from a feature
vector:

Q= {w,...,w0c)
f(x):R” = Q

= Regression - learn a function f that predicts a scalar
value (target) from a feature vector:

f(x): R” - R
= In both cases these are approximation to an

unknown “real-world” function F that generates
features and labels/targets.



EmEiricaI risk minimisation

= We want to learn model parameters that minimise
the risk of making an erroneous predictions

but the real joint distribution of features and class labels
or regression targets “in the world” is unknown

so we must approximate the “real” risk by the empirical
risk: the average error or loss on the training sample:

R X) =+ 3 U, f(x0)

I() is a loss function, penalising bad predictions w, # f(x,)

= Many loss functions can be used; a very common
one for classification is 0-1 (or symmetrical) loss:

lor(wn, f(xn)) = { (1) zz ; ﬁizg



Training, testing, and overfitting

= Minimising the risk functional on the training set will
encourage you to use more complex models and is not a
guarantee of good generalisation

High Bias Low Bias
Low Variance High Variance
-y ———_——— D a e eeee- o

Test Sample

Prediction Error

Training Sample

[Hastie et al., 2009]

Low High
Model Complexity

= |n practice, we minimise risk while penalising more
complex models (regularisation):

R (f.X,A) = R(f,X) + Al fI°



Bias, variance, and stability

= The bias-variance 5 - (V f.; yii i Syas )

tradeoff applies in i -

predictive models: S e
We can decrease e il b i
prediction error arbitrarily e
on a given dataset, thus E
yielding low bias. D, &) 5 (81 o
However, this G \\ e A/' o 1/ s
systematically comes at a G i T
price in variance: the et _—
parameters of f can Do PN P S G
change a lot if the training ../ Lo
set varies. This instability : : | |
can actually be exploited "=~ /N\_ /\
in ensembling. i i :

high Variance —_70-w
[Duda et al, 2001] 7
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Empirical evaluation of performance

= To have some confidence in our performance
estimate we must learn (train) the model on one
dataset, and evaluate it on another dataset

If we don’t do that, it is hard to substantiate claims of
generalisation

The error rate on the training set (resubstitution error)

can be made arbitrarily small... just use a complex
model

Remember our goal: predict unseen data.



Empirical evaluation of performance

= To have some confidence in our performance
estimate we must learn (train) the model on one
dataset, and evaluate it on another dataset

If we don’t do that, it is hard to substantiate claims of
generalisation

The error rate on the training set (resubstitution error)
can be made arbitrarily small... just use a complex
model

Remember our goal: predict unseen data.

= Maintain strict train/test separation throughout the
processing

Don’t select voxels on the whole dataset !

Always ask yourself: what would | do if | acquired data
for one more subject after my model is trained?



Hold-out techni

= Split the data into 2 or 3 parts

-y B

labels / targets

Tune
.o ° °
. [
. o
Full . x 040
Dataset Split @ [ o
] 2%
t § ] . o
zx X .
“ |

= This makes sub-optimal use of the data available

= Pessimistic bias
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M-fold cross-validation technique

oy : e feature 2
Split in folds, then train classifier...

decision
boundary

correct

...and evaluate it

Rotate partitions and repeat feature 1

Ultimately test (once)

Applies to scans, blocks, subjects



Nested cross-validation

= |f we need to tune the classifier (typically the
regularisation parameter A) or select features, we
must maintain train/test separation!

Add a nested cross-validation loop within the main

loop
outer - [
fold 1 s
iner L INuETe——
— -
_O here, retain
inner BT | ) the best one, anc
fold 2 BN apply to outer fold
to yield prediction
outer [

fold 2 pessssss

Not doing this is a surprisingly common mistake o
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Confusion matrix
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Confusion matrix

= Accuracy statistics can be shown in a confusion
matrix (summary table): =
Class 0 accuracy (po) = A/(A+B) W0 W
Class 1 accuracy (p1) = D/(C+D) . wo| A B
Accuracy (p) = (A+D)/(A+B+C+D) g C D
With 0-1 loss, we have

1
p=1-2 lo(wn, f(xn))

Biostats (Wo =healthy, W1 =disease):
sensitivity (“What is the probability that the disease is PRESENT
and that | detect it?”): D/(C+D) = TP/(FN+TP)

specificity: (“disease is ABSENT and | report no disease”. A/(A+B)
= TN/(FP+TN)
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= Accuracy statistics can be shown in a confusion
matrix (summary table): =
Class 0 accuracy (po) = A/(A+B) W0 W
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sensitivity (“What is the probability that the disease is PRESENT
and that | detect it?”): D/(C+D) = TP/(FN+TP)
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= TN/(FP+TN)

= Perfect: B=C=0. Be suspicious if this happens!

14



Confusion matrix

= Accuracy statistics can be shown in a confusion

matrix (summary table): =
Class 0 accuracy (po) = A/(A+B) Y

Wo
Class 1 accuracy (p1) = D/(C+D) . wo| A B
Accuracy (p) = (A+D)/(A+B+C+D) g C D

With 0-1 loss, we have
1
P = 1 — N ZlOl(wna f(Xn))

Biostats (Wo =healthy, W1 =disease):

sensitivity (“What is the probability that the disease is PRESENT
and that | detect it?”): D/(C+D) = TP/(FN+TP)

specificity: (“disease is ABSENT and | report no disease”. A/(A+B)
= TN/(FP+TN)

= Perfect: B=C=0. Be suspicious if this happens!
= Random: A=B=C=D. Same as flipping a coin.



Balance in datasets

" |f the classes don’t all have the same number of
examples

The classifier may sacrifice performance on the
minority classes to improve on the majority class

Accuracy may seem to be above chance whereas the
minority classes are sacrificed and below chance

= A common strategy is to subsample the majority
class, but data is lost

= Reporting class accuracies (po,..., pc) IS good practice
= Balanced accuracy is computed as »* = %ch

15



‘Soft’ versus ‘hard’ classifier outputs

= Many classifiers first compute a “soft” function value
g(x):R” = R?

= Then “hard” decisions are taken by a simple function
f(g(x) : R' = Q
flg(x)) := sgn(g(x))
= Both g() and f() contribute to accuracy figure

f() defines the decision boundary or threshold
Typically not much choice - it’s built in

= looking at g() output is informative

16



Sensitivity / specificity trade-off

= For a fixed classifier, increasing sensitivity can
only come at the cost of decreasing specificity,
and vice-versa.

17



Sensitivity / specificity trade-off

= For a fixed classifier, increasing sensitivity can
only come at the cost of decreasing specificity,
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Sensitivity / specificity trade-off

= For a fixed classifier, increasing sensitivity can
only come at the cost of decreasing specificity,
and vice-versa.
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Graphical representations: the ROC curve

= The Receiver Operating Characteristic (curve) is a
good way of seeing the sens/spec tradeoff over the
operating range of a classifier.

It is also used for classifier ,
comparison (with caution

if lines cross !) Z: S

= We can compute the o7t [ 27" [ —dassiter 1~ AuC 079

Area Under Curve o o cResler R AR O
(AUC) as a summary  3os '

measure of % 0al .

performance 03 ) - S

AUC = 1.0: perfect oo

AUC = 0.5: chance ol

OO (i2 OQ- (i6 (i8 1

1-specificity
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Mean sguared error

One of many ways to quantify error
LOO error in one fold

SEn = (Yn — f(Xn))2

Across LOOQO folds:

1 N

R(f,X) = MSE = <= 3" (y — [(x0)?

n=1

This is exactly the same as used in classical
inference (although we will have lost some efficiency
due to the cross-validation), except we quantify out-
of-sample MSE

Models with lower MSE predict better

20



Correlation of prediction with targets

= Correlation coefficient 71y
(across folds, depends
on CV)

90 -

21
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Parametric confidence intervals WA

= Parametric tests imply assumptions
} } HRF*stim

lID samples Ve
but! Correlation between scans

N stimulus
~J s
' w I BOLD

= Wilson Binomial score test T D

Model decisions in two-class classification as a binomial
distribution. Accuracy = “probabillity of success”

Works well for small (<40) and large n.

Confidence intervals at 95% (but coverage probability
can be impacted by violated assumptions)

Closed-form expression -> fast

gives upper and lower bounds, e.g. 40/60 subjects
classified = 66.7% pointwise, 5% CI [54.1% 77.3%)]
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Non-parametric: permutation testing

= No hypotheses on data distribution
= Hp: “class labels are non-informative”
= Test statistic: CV accuracy

True Permuted Permuted
= Estimate the distribution o e o

of the test statistic 1. e
under Ho by randomly
permuting labels M
times, and running  estset B B —
a full CV experiment ‘ l l

true’  accuracy accuracy

1 - erm real - aceurasy
= p-value: 577 | |2 00h™ >p )| +1
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Comgaring classifiers

m “|s classifier Oa better than classifier 6g?”

= Hypothesis testing framework! “Do the two sets of
decisions of classifiers 6a and Bs represent two

different populations?”

test sample 1121314510678 9|10
Oa X | X
OB X X X

Careful: Samples (sets of decisions) are dependent
(same evaluation/testing dataset), and measurement
type is categorical binary (for a two-class problem)

=Use McNemar test. Hop: “t

between the accuracies of t

nere is no difference

ne two classifiers”

25



McNemar Test

= Compute relationships between classifier decisions

OB Os X
DA N Nio
DA X No Noo

= |f Hp is true, we should have Noi = N1o=0.5(No1+N10)

= We can measure the discrepancy between this and

observed counts using the statistic:
2 _ ([Nor = Nio| - 1)°
No1 + Nio
= Then compare x= to critical value of x2 at a level of
significance a.

After [Dietterich, 1998] 26
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