Using Symmetries and Equitable Partitions Together to Find All Synchronization Clusters and Their Stability

Louis Pecora
Naval Research Laboratory, Washington, DC
Francesco Sorrentino
University of New Mexico, New Mexico
Aaron Hagerstrom
NIST, Boulder, CO
Thomas Murphy
IREAP \& ECE, University of Maryland, College Park,
Rajarshi Roy
IREAP \& Physics, University of Maryland, College
Park, Maryland

Joseph Hart
IREAP \& Physics, University of Maryland, College University of New Mexico, New Mexico

Abu Bakar Siddique

MSI68 Advances in Network Synchronization - Part II of II
Per Sebastian Skardal, Jie Sun, and Dane Taylor

What are synchronized clusters?
-

Cluster Synchronization in complex networks

(various versions in the literature)
Identical nodes (oscillators), Identical edges (couplings)
Adjacency matrix

$$
\frac{d \mathbf{x}_{i}}{d t}=F\left(\mathbf{x}_{i}\right)+\sigma \sum_{j=1}^{N} C_{i j} H\left(\mathbf{x}_{j}\right)
$$

Q Identify the clusters?

- Are the clusters stable?
- Complex (large) networks

Q Any dynamics (fixed pt, periodic, quasiperiodic, chaotic

Cluster synchronization, an "old" subject (early 2000's)

$$
\beta=0.72 \pi
$$

Symmetries and clusters in networks

Using symmetry to find clusters.

Network with identical nodes (oscillators) and identical edges

$$
\begin{array}{r}
\text { group } G=\left\{\mathrm{g}_{i}\right\} \\
\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \\
R_{g_{1}}
\end{array} \frac{\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)}{R_{g_{2}}}
$$

$\left\{R_{g_{i}}\right\}$ Representation of the group G e.g. $g_{2} g_{1}^{-1}=g_{3}=>R_{s_{2}} R_{s_{1}}^{-1}=R_{s_{3}}$

$$
\frac{d \mathbf{x}_{i}}{d t}=F\left(\mathbf{x}_{i}\right)+\sigma \sum_{j=1}^{N} C_{i j} H\left(\mathbf{x}_{j}\right) \quad \Rightarrow \quad R_{g} C=C R_{g} \quad \Rightarrow \quad C=R_{g}^{-1} C R_{g}
$$

Random Graphs

Random networks 11 nodes - 9 random edges

$$
8640 \text { symmetries }
$$

G.gens ()$=[(7,10),(6,7),(5,6),(4,8),(2,4)(8,9),(1,5)$, (1 11)
$\left\{\mathrm{g}_{i}\right\}$

Computational Group Theory

GAP

Groups, Algorithms, Programming a System for Computational Discrete Algebra

Sage

http://www.sagemath.org/

```
sage: x = var('x')
sage: solve(x^2 + 3*x + 2, x)
[x == -2, x == -1]
```


Python

for i,row in

enumerate(Adjmat):
rsum= row.sum()
Cplmat[i,i]= -rsum
print Cplmat

Free! (open source)

node sync vectors:
Node 2
orb $=[1,5]$
nodeSyncvec $[0,1,0,0,0,1,0,0,0,0,0]$ cycleSyncvec [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] Node 1
orb $=[2,4,11,6,9,10]$
nodeSyncvec $[1,0,1,0,1,0,1,0,0,1,1]$
cycleSyncvec $[0,1,0,1,0,1,0,0,1,1,1]$ Node 4
orb $=[3,7,8]$
nodeSyncvec $[0,0,0,1,0,0,0,1,1,0,0]$ cycleSyncvec $[0,0,1,0,0,0,1,1,0,0,0]$

M. Golubitsky, I. Stewart, and D.G. Schaeffer, Singularities and groups in bifurcation theory, Vols. I \& II (Springer-Verlag, New York, NY, 1985).
(1) No computer code for large networks
(2) Did not examine stability of clusters.

Stability: Coupling Matrix

-7.	1.	0.	1.	1.	1.	0.
1.	-10.	1.	1.	1.	1.	1.
0.	1.	-6.	1.	0.	1.	0.
1.	1.	1.	-10.	1.	1.	1.
1.	1.	0.	1.	-7.	1.	0.
1.	1.	1.	1.	1.	-10.	1.
0.	1.	0.	1.	0.	1.	-6.
0.	1.	0.	1.	0.	1.	0.
1.	1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.	1.

$$
\begin{array}{r}
\frac{d \delta \mathbf{x}_{i}}{d t}=D \mathbf{F}\left(\mathbf{x}_{i}\right) \delta \mathbf{x}_{i}+\sigma \sum_{i=}^{N}\left(c_{i j} D \mathbf{H}\left(\mathbf{x}_{j}\right) \delta\right)_{i} \\
\delta \mathbf{x}_{i} \rightarrow \delta \mathbf{x}_{i}+\mathbf{b} \quad \forall i \in \text { Cluster }
\end{array}
$$

$$
\begin{gathered}
\forall g \in \mathcal{G}=\text { group of }\left\{R_{g}\right\} \text { is a representation of } \mathcal{G} \\
\text { all symmetries } \\
\left\{R_{g}\right\} \text { It is reducible if } \exists T \forall \mathrm{~g} T R_{g} T^{-1}=\left(\begin{array}{c}
\text { Irreducible } \\
C=R_{s}^{-1} C R_{g} \\
T \text { block diagonalizes } C
\end{array}\right.
\end{gathered}
$$

The software does not supply T

-7.	1.	0.	1.	1.	1.	0.	0.	1.	1.	1.
1.	-10.	1.	1.	1.	1.	1.	1.	1.	1.	1.
0.	1.	-6.	1.	0.	1.	0.	0.	1.	1.	1.
1.	1.	1.	-10.	1.	1.	1.	1.	1.	1.	1.
1.	1.	0.	1.	-7.	1.	0.	0.	1.	1.	1.
1.	1.	1.	1.	1.	-10.	1.	1.	1.	1.	1.
0.	1.	0.	1.	0.	1.	-6.	0.	1.	1.	1.
0.	1.	0.	1.	0.	1.	0.	-6.	1.	1.	1.
1.	1.	1.	1.	1.	1.	1.	1.	-10.	1.	1.
1.	1.	1.	1.	1.	1.	1.	1.	1.	-10.	1.
1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	-10.

$=1$ Trivial Representation
syncnronization ${ }^{\prime}$
Manifold

All other
Representations

Experimental confirmation of symmetry clusters

Aaron Hagerstrom Rajarashi Roy
Thomas Murphy
Francesco Sorrentino

How to implement maps in experiment

I I node random network (video)
32 Symmetries
4 nontrivial clusters
I trivial cluster
5×5 Sync block

$$
\beta=0.72 \pi
$$

$$
\beta=1.4 \pi
$$

Chimera in identical synchronized network (Not just for phase oscillators)

Chimeras, Cluster States, and Symmetries: Experiments on the Smallest Chimera - Joseph Hart

MS 122

Not transients

Constructing non-symmetry clusters

Beyond symmetry clusters

Forming Equitable and Laplacian Clusters from Symmetry (orbital) Clusters

Def: An Equitable Partition of a graph is a collection of disjoint subsets $C_{i}\left(C_{i} \cap C_{j}=\varnothing\right)$ of all the nodes such that, if node $v \in C_{i}$ has d connections to nodes in C_{j} then for any other node $u \in C_{i}$ has d connections to nodes in C_{j}.

Every OP is an EP, but the converse is not true. There are
EPs that are not OPs. Similar to groupoid synchronization criterion

An algorithm from Igor Belykh* provides an efficient method for finding the coarsest EP. However finding finer EPs is a hard problem. This is important since there may be finer EPs that are still not OPs. An example coming up.

Problem 1: Find finer EPs that are not OPs.

* I. Belykh and M. Hasler, CHAOS 21, 016106 (2011)

Problem 2: Stability calculations. Reducing the transverse manifold in the variational equations.

EPs (Equitable Clusters)

Ref: Schaub et al.*
Make synchronization manifold basis and find the orthogonal compliment (the transverse space, V, this will separate out the synchronization manifold, but will not block diagonalize the transverse manifold.

- Stability calculations scale
badly (N^{2})
- Stability of individual clusters is unknown.
- Type of desynchronization bifurcation is unknown.

Is it even possible to block diagonalize the transverse manifold?

Constructing an EP from an OP

The Abu network.

Symmetries->OP orbitals= $[1,2,3,4],[5,7,8,10],[6,9]$

EP ->Equitable Clusters= [1,2,3,4], [5,7,8,10,6,9]

Make the EP by merging clusters
from its OP refinement

$$
[5,7,8,10] \cup[6,9]
$$

Observation: We can always construct an EP from an OP refinement.
There is always a subgroup of the original symmetry group that will be a refinement of any EP

Construction of a block diagonalized variational matrix for the EP

for the new EP

- Laplacian coupling - diag $=-$ row sum

Non-symmetry, Non-equitable clusters

$$
\frac{d \mathbf{x}_{i}}{d t}=F\left(\mathbf{x}_{i}\right)+\sigma \sum_{j=1}^{N} C_{i j} H\left(\mathbf{x}_{j}\right)
$$

Complete cluster

$$
\mathbf{x}_{i}=\mathbf{s} \quad \forall i \quad \frac{d \mathbf{s}}{d t}=F(\mathbf{s})+\sigma \sum_{j=1}^{N} C_{i j} H(\mathbf{s})=F(\mathbf{s})+\sigma H(\mathbf{s}) \sum_{j=1}^{N} \ell_{i j}^{\prime}=F(\mathbf{s})
$$

Combine clusters

$$
\operatorname{ux}_{i}=\mathbf{s} \operatorname{sers}_{i=1,3,5}
$$

$$
\begin{aligned}
\frac{d \mathbf{s}}{d t} & =F(\mathbf{s})+\sigma\left[H\left(\mathbf{x}_{2}\right)+H\left(\mathbf{x}_{4}\right)+H(\mathbf{s})-3 H(\mathbf{s})\right] \\
& =F(\mathbf{s})+\sigma\left[H\left(\mathbf{x}_{2}\right)+H\left(\mathbf{x}_{4}\right)-2 H(\mathbf{s})\right]
\end{aligned}
$$

Hierarchy of Adjacency and Laplacian Clustering

Orbital	Equitable	External Equitable
Partitions	Partitions	Partitions
Symmetry	[Symmetry	[Symmerry
Clusters	Clusters]	Clusters]
Adjacency	Adjacency	Laplacian
and	and	Laplacian
Laplacian		

Building Blocks

...and simplify the variational
equation.

Conclusions and remarks

- We can analyze all potential cluster formations in Adjacency and Laplacian networks
- Encompasses or overlaps other "phenomena"

Cluster sync, Partial sync, Remote sync, Some Chimera states

- Weighted edges/couplings
- Different oscillators
- Bifurcation forms

Normal forms \& symmetry

1. Cluster Synchronization and Isolated Desynchronization in Complex Networks with Symmetries, Pecora, Sorrentino, Hagerstrom, Murphy, and Roy, Nature Communications, 5, 4079 (13 June 2014)
2. Complete Characterization of Stability of cluster Synchronization in Complex Dynamical Systems, Sorrentino, Pecora, Hagerstrom, Murphy, and Roy, Science Advances 5, 011005-1-17 (2015).
3. Francesco Sorrentino and Louis Pecora, Approximate cluster synchronization in networks with symmetries and parameter mismatches," CHAOS 26, 094823 (2016);
4. Joseph D. Hart, Kanika Bansal, Thomas E. Murphy, and Rajarshi Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network, CHAOS 26, 094801 (2016)

Software Hagerstrom, A. Network Symmetries and Synchronization (https:// sourceforge.net/projects/networksym/, 2014).

Questions?

$$
\beta=0.72 \pi
$$

Learning Group Theory and Group Representation Theory

M. Tinkham, Group Theory and Quantum Mechanics
(McGraw-Hill, New York, NY, 1964)
representation theory in the first three chapters (~ 37 pages).
online: http://www.learnerstv.com/Free-Maths-Video-lectures-Itv759-Page1.htm

Learner's TV

Nadir Jeevanjee, An Introduction to Tensors and Group Theory for Physicists, Birkhäuser (New York, NY, 2010)

Michael T. Vaughn, Introduction to Mathematical Physics, Chapter 9 (Wiley-VCH)
M. Golubitsky, I. Stewart, and D.G. Schaeffer, Singularities and groups in bifurcation theory, Vols. I \& II (Springer-Verlag, New York, NY, 1985).
B.D. MacArthur, R.J. Sanchez-Garcia, and J.W.

Anderson, \On automorphism groups of networks," Discrete Appl. Math. 156, 3525 (2008).

Geometric decomposition into subgroups.

	Number of Nodes	Number of Edges	Number of Symmetries
Network	$N_{\mathscr{G}}$	$M_{\mathscr{G}}$	$a_{\mathscr{G}}$
Human B Cell Genetic Interactions[3]	5,930	64,645	5.9374×10^{13}
C. elegans Genetic Interactions[26]	2,060	18,000	6.9985×10^{161}
BioGRID datasets[23]:			
Human	7,013	20,587	1.2607×10^{485}
S. cerevisiae	5,295	50,723	6.8622×10^{64}
\quad Drosophila	7,371	25,043	3.0687×10^{493}
Mus musculus	209	393	5.3481×10^{125}
Internet (Autonomous Systems Level)[12]	22,332	45,392	$1.2822 \times 10^{11,298}$
US Power Grid[25]	4,941	6,594	5.1851×10^{152}

$>88 \%$ of nodes are in clusters in all above networks

Other networks

\section*{.

.
 \square

}
$+$
\square
$\frac{1}{-}$
.
$=$
ther

를
(
,

-
.
-
\square

-
$=$ \square
,

$$
=
$$

-
-

\square
,

-

\square
\qquad

,
\qquad
\qquad
\qquad
\qquad

Symmetries and clusters in networks with different topologies

$N=100$ nodes 10,000 realizations of (oscillators)
each type

10^{60} symmetries

Electric power grid of Nepal $N=15$
Cluster synchronization?

