Ensembles – Could we actually file one?

Christopher Cooksey, FCAS, MAAA, CSPA Head Actuary, Data & Analytics

5 November 2020

What is an Ensemble?

Ensemble as Feature Creation

Ensemble as Rate Enhancement

Will Regulators accept Ensembles?

What is an Ensemble?

What is an Ensemble?

An approach to building predictive models.

What if two reasonably accurate models tell you something different from each other?

Is one right and one wrong?

Simple Actuarial Ensemble

Selecting a statewide loss trend...

- State Trend low bias, high variance
- National Trend high bias, low variance

Selected Trend = x(State Trend) + (1 - x)(National Trend)

Credibility weighting is a simple ensemble.

What makes a good Ensemble algorithm?

Component models ("learners") must be quick to build and quick to process in production environments.

Component models must make *different* errors from each other. They must be...decoupled.

Example: Bagging (bootstrap aggregation)

Example: Bagging (bootstrap aggregation)

Random Forest uses bagging. It uses CART to build the trees, modified to include more randomness.

"Averaging" here is general – could be weighted, mode, mean...

Example: Boosting

Example: Boosting

Residual modeling is the defining characteristic of boosting methods.

Often called gradient boosting because it is a form of gradient descent.

An example is GBM (Gradient Boosting Machine). XGBoost is a common implementation package (R, Python, others).

Ensembles as Feature Creation

Can Ensembles be used in Pricing?

Ensembles as a Rating Plan

An ensemble model is not likely to be the support for your entire rating plan.

- (Base rate * relativities) long precedes GLMs.
- Complexity is likely a fatal issue when considering ensembles of trees as the entirety of the rating plan.

Could ensemble models be *part* **of your rating plan?**

Feature Creation

Using a defined set of predictors to combine and create a new predictor.

- Geographic information -> Territory Definitions
- Vehicle information -> Rate Symbols
- Credit Information -> Credit Score

Isolates the effects in one place. Also allows indirectly predictive fields to play a role in rating.

Trees can be effective alternatives to the traditional smoothing and clustering approach.

Need to have geographical descriptions to use as predictors – for example, zip-code information.

- Demographic info population density, etc.
- Weather info number of snow days, etc.

Smoothing and Clustering – current approach

- Experience in credible geographies is attributed to others to the extent that they are "alike".
- "Likeness" is defined by geographical distance.
- User-provided smoothing parameter.
- Cluster smoothed information into groups.

Tree-based Ensemble – alternative approach

- Experience in credible geographies is attributed to others to the extent that they are "alike".
- "Likeness" is defined by having similar characteristics – being in the same branch of the tree.

This tree structure is defined by the geographies where you have business.

However, it would apply to all geographies, even those where you don't have business.

Tree-based Ensemble – alternative approach

- Experience in credible geographies is attributed to others to the extent that they are "alike".
- "Likeness" is defined by having similar characteristics

 being in the same branch of the tree.
- No user-provided smoothing parameter.
- Cluster ensemble predictions into groups.

2011 RPM talk – Territorial Ratemaking (Eliade Micu)

Conclusions from that talk – Smoothing/Clustering v Trees

- Similar results overall; similar territories produced.
- Trees provided slightly better lift and fit.
- Trees require less information from the user (distance measure, smoothing parameter, number of clusters).
- Tree-based models can be applied to other states, and the approach can generalize to other problems.

Creating Rate Symbols

With "likeness" defined by characteristics, not physical distance, can take the same approach to vehicle information.

Need general information about vehicles as predictors – Engine size, vehicle weight, body style, etc.

Creating Rate Symbols

Tree-based Ensemble – approach to Rate Symbols

- Experience in credible vehicle types is attributed to others to the extent that they are "alike".
- "Likeness" is defined by having similar characteristics

 being in the same branch of the tree.
- No user-provided smoothing parameter.
- Cluster ensemble prediction (smoothed information) into groups.

Feature Creation

Useful when you want to compartmentalize effects

- Auto vehicle effects, geographic effects,...driver effects?
- Commercial area of operations; company characteristics
- Any line credit characteristics

Credit as Feature Creation

Why create a feature out of credit? Why not let number of late payments, etc. play as individual predictors?

Credit gets more scrutiny than other features.

- Relating predictors to outcomes in general
- Reason codes for the specific

Note that ensembles can provide this information, despite their complexity.

Ensembles as Rate Enhancement

Are current rating plans perfect?

If perfect, residuals from rating plans should be random, with no discernable signals. To test, try to model the residuals.

Turns out, it is easy to create credible, stable models from the residuals of GLM models using ensemble techniques. Why does residual modeling work?

Probably more to do with the treebased approach.

Trees are complementary to GLMs and focus well on precisely the signal that GLMs have trouble representing.

GLM Pred. Pure Prem = $\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$

 $Residual Loss Ratio = \frac{Actual Loss}{Pred. Pure Prem}$

Any systemic variation in the residual LR can be implemented as an adjustment to the predicted pure premium from the GLM.

In other words, just one more relativity.

In some sense, we've combined the idea of feature creation and residual modeling to create a single adjustment factor that can be used as part of a rating plan.

To simplify things, express your residual loss ratio model with a 3-digit score and associated predictions.

Ensemble Group	Earned Exposures
0-99	10%
100-249	15%
250-499	25%
500-749	25%
749-899	15%
900-999	10%
Total	100%

Ensemble Group	Earned Exposures	Predicted Pure Premium
0-99	10%	11%
100-249	15%	16%
250-499	25%	25%
500-749	25%	25%
749-899	15%	14%
900-999	10%	9%
Total	100%	100%

Ensemble Group	Earned Exposures	Predicted Pure Premium	Actual Incurred Loss
0-99	10%	11%	14%
100-249	15%	16%	18%
250-499	25%	25%	26%
500-749	25%	25%	24%
749-899	15%	14%	12%
900-999	10%	9%	7%
Total	100%	100%	100%

Ensemble Group	Earned Exposures	Predicted Pure Premium	Actual Incurred Loss	Residual Loss Ratio	Residual Loss Ratio Relativity
0-99	10%	11%	14%	127.3%	1.273
100-249	15%	16%	18%	112.5%	1.125
250-499	25%	25%	26%	104.0%	1.040
500-749	25%	25%	24%	96.0%	0.960
749-899	15%	14%	12%	78.6%	0.786
900-999	10%	9%	7%	77.8%	0.778
Total	100%	100%	100%	100%	1.000

The factor is filed as another rating variable. Actuarial justification comes from the model output.

Rate Adjustment Factor Score	Indicated Relativity	Selected Relativity
0-99	1.273	1.20
100-249	1.125	1.10
250-499	1.040	1.04
500-749	0.960	0.96
749-899	0.786	0.80
900-999	0.778	0.78
Total	1.000	1.000

This approach does not change the GLM indicated relativities.

It is an adjustment which improves the accuracy of the GLM predictions.

Rate Adjustment Factors – Alternate Approach

The previous approach is entirely internally consistent. The model is built on the GLM residuals and so is applied straight-forwardly to the GLM prediction.

Another option is to re-fit the GLM with the 3-digit score as an additional predictor and let it solve for new relativities.

With this approach we are specifically viewing the 3-digit score from the residual model as a created feature. This feature can be viewed as field that captures the nonlinear relationships.

Will Regulators Accept Ensembles?

The Short Answer

Yes. We've seen it many times.

Companies are using it as the basis of their territory groupings.

Companies are also using it as an adjustment factor to their GLM-based rates.

However...

You still need to concern yourself with having acceptable predictors and, possibly, multiple models across states.

It is possible that a regulator will not be comfortable with the model.

Transparency is Key

The nice thing about trees, and therefore ensembles of trees, is that while they can be complex, they are completely *transparent*.

Make sure you can print out every split of every tree.

Some states need to have "the calculation" on file.

- Ensembles work by combining information from multiple models.
- The most common ensemble techniques are based on decision trees.
- Ensembles of trees are powerful techniques for creating features territory groups, rate symbols and, potentially, many others.
- Ensembles of trees are powerful techniques for finding signal in the residual of GLM models. The results can be used as adjustment factors in rating plans.
- You will get questions from regulators, but the questions generally have satisfactory answers.

Questions?

Christopher Cooksey, FCAS, MAAA, CSPA Head Actuary, Data and Analytics

Guidewire Software

ccooksey@guidewire.com

All photos from Unsplash.com

Ensembles – Could we actually file one?

Brian Poole FCAS Actuarial Data Manager Indiana Farm Bureau Insurance

March 24 2020

Agenda

- Benefits
- Inputs
- Internal Acceptance
- Implementation
- Filing

Benefits of Adding Ensemble Model

- Interactions missed in rating formula
- Secondary
 - •Add new variables
 - Simplify future changes

Determining Variables

- Start with everything
 - Data quality
 - Regulatory concerns
 - Choice Variables
 - Availability
- Let the analysis do the rest

Internal acceptance

- Input variables Clearly defined • Simple is good • Univariate analysis • Lift charts • Typical risks
- New information vs acceptance

Implementation Concerns

- •New variables → Learning curve
- •To see or not to see
 - Actionable?
 - Residual model
 - Companion GLM models
- Refreshing Models

Filing the Model

 Identify technique Simple description Overview of analysis Define variables •Model Results → Rating

From Model to Rating Factor

- Model → loss ratio buckets
- Rank buckets
- •Assign scores
- Create score ranges → Rating groups
- •Groups → Rating factors

Compare Training to Validation

Summary of Aggregate Experience Training Data

Policy Years 2013-2017 as of 12/31/2017

(1)	(2)	(3)	(4)	(5)	(6)		
					Case	Actual Loss	Indicated
Risk Score	Earned		Case Incurred		Incurred Loss	Ratio	Loss Ratio
Band	Exposures	Earned Premium	Losses & ALAE	Claim Count	& ALAE Ratio	Relativity	Relativity
1-99	128,645	190,010	161,067	19,448	84.8%	1.699	1.618
100-199	128,645	187,525	123,724	16,553	66.0%	1.323	1.319
200-299	128,645	195,095	111,340	15,700	57.1%	1.144	1.151
300-399	128,645	188,359	97,836	14,370	51.9%	1.041	1.050
400-499	128,645	182,834	88,566	12,961	48.4%	0.971	0.958
500-599	128,645	169,750	72,814	11,072	42.9%	0.860	0.873
600-699	128,645	155,691	59,090	9,280	38.0%	0.761	0.801
700-799	128,645	141,331	47,431	7,401	33.6%	0.673	0.706
800-899	128,645	122,472	33,808	5,362	27.6%	0.553	0.601
900-1000	128,645	101,552	19,739	2,625	19.4%	0.390	0.352
Overall	1,286,450	1,634,619	815,415	114,772	49.9%	1.000	1.000

Summary of Aggregate Experience Validation Data

Policy Years 2013-2017 as of 12/31/2017

(1)	(2)	(3)	(4)	(5)	(6)		
					-		
					Case	Actual Loss	Indicated
Risk Score	Earned		Case Incurred		Incurred Loss	Ratio	Loss Ratio
Band	Exposures	Earned Premium	Losses & ALAE	Claim Count	& ALAE Ratio	Relativity	Relativity
1-99	55,284	81,841	61,573	8,168	75.2%	1.508	1.618
100-199	55,069	80,302	54,081	7,212	67.3%	1.350	1.319
200-299	55,189	83,594	48,285	6,715	57.8%	1.158	1.151
300-399	55,089	81,162	44,047	6,152	54.3%	1.088	1.050
400-499	55,264	78,250	37,511	5,432	47.9%	0.961	0.958
500-599	55,164	72,675	32,356	4,812	44.5%	0.892	0.873
600-699	54,989	66,663	27,338	4,098	41.0%	0.822	0.801
700-799	55,264	60,800	22,116	3,246	36.4%	0.729	0.706
800-899	55,114	52,538	16,165	2,312	30.8%	0.617	0.601
900-1000	55,214	43,333	8,180	1,107	18.9%	0.378	0.352
Overall	551,638	701,158	351,650	49,255	50.2%	1.005	1.000

Compare Indicated to Selected

Summary of Aggregate Experience

Policy Years 2013-2017 as of 12/31/2017

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
			Case			Loss Ratio				
			Incurred		Case	Relativity	Indicated			Proposed
Risk Score	Earned	Earned	Losses &		Incurred Loss	(Indicated	Factor	Current	Proposed	Factor
Band	Exposures	Premium	ALAE	Claim Count	& ALAE Ratio	Factor) *	Change	Factor	Factor	Change
1-99	183,929	271,851	222,639	27,616	81.9%	1.618	61.8%	1.000	1.200	20.0%
100-199	183,714	267,827	177,805	23,765	66.4%	1.319	31.9%	1.000	1.150	15.0%
200-299	183,834	278,689	159,624	22,415	57.3%	1.151	15.1%	1.000	1.100	10.0%
300-399	183,734	269,521	141,883	20,523	52.6%	1.050	5.0%	1.000	1.050	5.0%
400-499	183,909	261,084	126,077	18,394	48.3%	0.958	-4.2%	1.000	1.000	0.0%
500-599	183,809	242,425	105,170	15,884	43.4%	0.873	-12.7%	1.000	0.950	-5.0%
600-699	183,634	222,355	86,428	13,378	38.9%	0.801	-19.9%	1.000	0.900	-10.0%
700-799	183,909	202,131	69,547	10,646	34.4%	0.706	-29.4%	1.000	0.850	-15.0%
800-899	183,759	175,010	49,972	7,675	28.6%	0.601	-39.9%	1.000	0.800	-20.0%
900-1000	183,859	144,885	27,920	3,732	19.3%	0.352	-64.8%	1.000	0.750	-25.0%
Overall	1,838,088	2,335,777	1,167,065	164,027	50.0%	1.000	0.0%	1.000	1.000	0.0%

More Comparisons

Filing Questions

•What is "the calculation"?
•Double dipping?
•Typical Risks?
•GLM Output

• Internal and regulatory acceptance share common features

• Keep description of model and process simple and non-technical (but disclose and document both)

• Lift comparison of modeled vs hold out data are key