A posteriori error estimates and stopping criteria in a space-time domain decomposition method for two-phase flow with discontinuous capillary pressure

> Elyes Ahmed, Sarah Ali Hassan, Caroline Japhet, Michel Kern, Martin Vohralík

INRIA Paris — ENPC — University Paris 13 Work supported by Andra, ANR Dedales & ERC Gatipor

SIAM GS19, March 11 - 14, 2019, Houston, TX, USA

Outline

Motivations – physical problem

Domain decomposition

- Optimized Schwarz Waveform Relaxation algorithm
- Discretization numerical example

A posteriori error estimates

- Saturation and flux reconstruction
- A posteriori stopping criteria
- Numerical examples

Innia

Geological repository for nuclear waste

Deep underground repository

(High-level waste)

Ínnia -

Geological repository for nuclear waste

Deep underground repository

(High-level waste)

Challenges

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

Geological repository for nuclear waste

Deep underground repository

(High-level waste)

Challenges

- Different materials → strong heterogeneity, different time scales.
- Large differences in spatial scales.
- Long-term computations.

- Use space-time DD
- Estimate the error at DD iterations
- Develop criteria to stop DD iterations as soon as the discretization error is reached
 Linta

Domain decomposition in space

• Discretize in time and apply the DD algorithm at each time step:

India

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface

Innia.

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface

(sources from

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Same time step on the whole domain.

1 -----

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Same time step on the whole domain.

(sources from

Domain decomposition in space

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Same time step on the whole domain.

• Solve time-dependent problems in the subdomains

(sources from

Domain decomposition in space

Space-time domain decomposition

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Same time step on the whole domain.

• Solve time-dependent problems in the subdomains

1 -----

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface [Halpern-Nataf-Gander (03), Martin (05)]

(sources and

Domain decomposition in space

- Discretize in time and apply the DD algorithm at each time step:
 - Solve stationary problems in the subdomains
 - Exchange information through the interface
- Same time step on the whole domain.

Space-time domain decomposition

- Solve time-dependent problems in the subdomains
- Exchange information through the space-time interface [Halpern-Nataf-Gander (03), Martin (05)]

Different time steps can be used in each subdomain according to its physical properties.
 [Halpern–Japhet–Szeftel (12), Hoang–Japhet–Jaffré–M.K.–Roberts (13)]

Ínnia -

Physical problem: two-phase flow with 2 rock types

Two-phase (water – gas) immiscible flow, neglect advection (capillary trapping) (Enchery, Eymard, Michel (06), Cances (08)) $u \in [0, 1]$: gas saturation. $\pi(u)$ capillary pressure, increasing on [0, 1], $\varphi(u)$: Kirchhoff transform

Nonlinear diffusion equation

 $\partial_t \boldsymbol{u} - \Delta \varphi(\boldsymbol{u}) = 0 \quad \text{in } \Omega \times [0, T]$ $\varphi(\boldsymbol{u}) = \varphi(\boldsymbol{g}) \text{ on } \partial \Omega \times [0, T], \quad \boldsymbol{u}(., 0) = u_0(.) \text{ in } \Omega$

<mark>U</mark> 1 Ω1 π1(U1)	u ₂ π ₂ (u ₂)	$\Omega_{_2}$
$ abla \phi_1({f u}_1).{f n}_1$	$ abla \phi_2(u_2).n_2$	

Physical problem: two-phase flow with 2 rock types

Two-phase (water – gas) immiscible flow, neglect advection (capillary trapping) (Enchery, Eymard, Michel (06), Cances (08)) $u \in [0, 1]$: gas saturation. $\pi(u)$ capillary pressure, increasing on [0, 1], $\varphi(u)$: Kirchhoff transform

Nonlinear diffusion equation

$$\begin{array}{l} \partial_t \boldsymbol{u} - \Delta \varphi(\boldsymbol{u}) = 0 & \text{in } \Omega \times [0, T] \\ \varphi(\boldsymbol{u}) = \varphi(\boldsymbol{g}) \text{ on } \partial \Omega \times [0, T], \quad \boldsymbol{u}(., 0) = \boldsymbol{u}_0(.) \text{ in } \Omega \end{array}$$

Physical transmission conditions: continuity of

Cap. pressure Need to *truncate* cap. pressure functions [Chavent, Jaffré (86)], [Ern, Mozolewski, Schuh (10)] $\bar{\pi}_1(u_1) = \bar{\pi}_2(u_2)$ on $\Gamma \times (0, T)$

Fluxes $\nabla \varphi_1(\boldsymbol{u}_1) \cdot \boldsymbol{n}_1 = -\nabla \varphi_2(\boldsymbol{u}_2) \cdot \boldsymbol{n}_2$ on Γ

2 different nonlinearities. Both u and $\varphi(u)$ discontinuous across Γ .

 $\begin{array}{c|c} & {\bf U}_1 & {\bf U}_2 \\ \\ \Omega_1 & \pi_1({\bf U}_1) & \pi_2({\bf U}_2) & \Omega_2 \\ \\ \nabla \phi_1({\bf U}_1).{\bf n}_1 & \nabla \phi_2({\bf U}_2).{\bf n}_2 \end{array}$

India

Physical problem: two-phase flow with 2 rock types

Two-phase (water – gas) immiscible flow, neglect advection (capillary trapping) (Enchery, Eymard, Michel (06), Cances (08)) $u \in [0, 1]$: gas saturation. $\pi(u)$ capillary pressure, increasing on [0, 1], $\varphi(u)$: Kirchhoff transform

Nonlinear diffusion equation

$$\partial_t u - \Delta \varphi(u) = 0$$
 in $\Omega \times [0, T]$
 $\varphi(u) = \varphi(g)$ on $\partial \Omega \times [0, T]$, $u(., 0) = u_0(.)$ in Ω

Physical transmission conditions: continuity of

Cap. pressure Need to *truncate* cap. pressure functions [Chavent, Jaffré (86)], [Ern, Mozolewski, Schuh (10)] $\bar{\pi}_1(u_1) = \bar{\pi}_2(u_2)$ on $\Gamma \times (0, T)$

Fluxes $\nabla \varphi_1(\boldsymbol{u}_1) \cdot \mathbf{n}_1 = -\nabla \varphi_2(\boldsymbol{u}_2) \cdot \mathbf{n}_2$ on Γ

2 different nonlinearities. Both u and $\varphi(u)$ discontinuous across Γ .

 $\begin{array}{c|c} & {\bf u}_1 & {\bf u}_2 \\ \\ \Omega_1 & \pi_1({\bf u}_1) & \pi_2({\bf u}_2) & \Omega_2 \\ \\ \nabla \phi_1({\bf u}_1).{\bf n}_1 & \nabla \phi_2({\bf u}_2).{\bf n}_2 \end{array}$

nata -

Equivalent space-time multidomain formulation

Solve the space-time coupled problem, with i = 1, 2: $\partial_t u_i - \Delta \varphi_i(u_i) = 0$ in $\Omega_i \times [0, T]$

with physical transmission conditions on space-time interface $\Gamma \times [0, T]$

$$\bar{\pi}_1(u_1) = \bar{\pi}_2(u_2)$$

$$\nabla \varphi_2(u_2) \cdot n_2 = -\nabla \varphi_1(u_1) \cdot n_1$$

Ingla

Equivalent space-time multidomain formulation

Solve the space-time coupled problem, with i = 1, 2: $\partial_t u_i - \Delta \varphi_i(u_i) = 0$ in $\Omega_i \times [0, T]$

with Robin transmission conditions on space-time interface $\Gamma \times [0, T]$

$$\nabla \varphi_1(\boldsymbol{u}_1) \cdot \boldsymbol{n}_1 + \alpha_{12} \bar{\pi}_1(\boldsymbol{u}_1) = -\nabla \varphi_2(\boldsymbol{u}_2) \cdot \boldsymbol{n}_2 + \alpha_{12} \bar{\pi}_2(\boldsymbol{u}_2)$$
$$\nabla \varphi_2(\boldsymbol{u}_2) \cdot \boldsymbol{n}_2 + \alpha_{21} \bar{\pi}_2(\boldsymbol{u}_2) = -\nabla \varphi_1(\boldsymbol{u}_1) \cdot \boldsymbol{n}_1 + \alpha_{21} \bar{\pi}_1(\boldsymbol{u}_1)$$

Equivalent to original problem

Innia

Equivalent space-time multidomain formulation

Solve the space-time coupled problem, with i = 1, 2: $\partial_t u_i - \Delta \varphi_i(u_i) = 0$ in $\Omega_i \times [0, T]$

with Robin transmission conditions on space-time interface $\Gamma \times [0, T]$

$$\nabla \varphi_1(\boldsymbol{u}_1) \cdot \boldsymbol{n}_1 + \alpha_{12} \bar{\pi}_1(\boldsymbol{u}_1) = -\nabla \varphi_2(\boldsymbol{u}_2) \cdot \boldsymbol{n}_2 + \alpha_{12} \bar{\pi}_2(\boldsymbol{u}_2)$$
$$\nabla \varphi_2(\boldsymbol{u}_2) \cdot \boldsymbol{n}_2 + \alpha_{21} \bar{\pi}_2(\boldsymbol{u}_2) = -\nabla \varphi_1(\boldsymbol{u}_1) \cdot \boldsymbol{n}_1 + \alpha_{21} \bar{\pi}_1(\boldsymbol{u}_1)$$

Equivalent to original problem

For $k \ge 0$, solve in parallel the space-time Robin subdomain problems (i = 1, 2):

$$\partial_t u_i^k - \Delta \varphi_i(\boldsymbol{u}_i^k) = 0 \quad \text{in } \Omega_i \times (0, T)$$

$$\nabla \varphi_i(\boldsymbol{u}_i^k) \cdot \boldsymbol{n}_i + \alpha_{ij} \overline{\pi}_i(\boldsymbol{u}_i^k) = g_i^{k-1} \quad \text{on } \Gamma \times (0, T)$$
with $g_i^{k-1} = -\nabla \varphi_i(\boldsymbol{u}_i^{k-1}) \cdot \boldsymbol{n}_i + \alpha_{ij} \overline{\pi}_i(\boldsymbol{u}_i^{k-1}) (j = 3 - i).$

Ingla

Equivalent space-time multidomain formulation

Solve the space-time coupled problem, with i = 1, 2: $\partial_t u_i - \Delta \varphi_i(u_i) = 0$ in $\Omega_i \times [0, T]$

with Robin transmission conditions on space-time interface $\Gamma \times [0, T]$

$$\begin{aligned} \nabla\varphi_1(\boldsymbol{u}_1)\cdot\boldsymbol{n}_1 + \alpha_{12}\bar{\pi}_1(\boldsymbol{u}_1) &= -\nabla\varphi_2(\boldsymbol{u}_2)\cdot\boldsymbol{n}_2 + \alpha_{12}\bar{\pi}_2(\boldsymbol{u}_2)\\ \nabla\varphi_2(\boldsymbol{u}_2)\cdot\boldsymbol{n}_2 + \alpha_{21}\bar{\pi}_2(\boldsymbol{u}_2) &= -\nabla\varphi_1(\boldsymbol{u}_1)\cdot\boldsymbol{n}_1 + \alpha_{21}\bar{\pi}_1(\boldsymbol{u}_1)\end{aligned}$$

Equivalent to original problem

For $k \ge 0$, solve in parallel the space-time Robin subdomain problems (i = 1, 2):

$$\begin{aligned} \partial_t u_i^k &- \Delta \varphi_i(\boldsymbol{u}_i^k) = 0 \quad \text{ in } \Omega_i \times (0, T) \\ \nabla \varphi_i(\boldsymbol{u}_i^k) \cdot \boldsymbol{n}_i &+ \alpha_{ij} \overline{\pi}_i(\boldsymbol{u}_i^k) = g_i^{k-1} \quad \text{ on } \Gamma \times (0, T) \end{aligned}$$

with $g_i^{k-1} = -\nabla \varphi_j(\boldsymbol{u}_j^{k-1}) \cdot \boldsymbol{n}_j + \boldsymbol{\alpha}_{ij} \bar{\pi}_j(\boldsymbol{u}_j^{k-1})$ (j = 3 - i).

- Start with $-\nabla \varphi_j(\mathbf{u}_j^0) \cdot n_j + \alpha_{ij}(\bar{\pi}_j(\mathbf{u}_j^0)) = g_i^0$ a given function, i = 1, 2.
- Basic ingredient: subdomain solver with Robin BC (existence proof in progress)
- α_{ij} free coefficients, chosen to optimize convergence rate
 [Gander (06), Japhet, Nataf (01)], [Halpern, Hubert (14)], [Caetano, Gander, Halpern, Szeftel (10)]

M. Kern (INRIA - Paris 13)

Stopping criteria for DD

SIAM GS19 6 / 16

Discretization

In space: two-point finite volumes

Two-point finite volume scheme on rectangular mesh, additional unknowns at the centers of the faces on the interface At each OSWR iteration k, at each time step n, solve non-linear system over each subdomain i for

$$oldsymbol{u}_{h, au}^k = \left\{ (oldsymbol{u}_K^{n+1,k})_{K\in\mathcal{T}_i}, (oldsymbol{u}_{\sigma}^{n+1,k})_{\sigma\in\mathcal{E}_{i,\Gamma}}
ight\}$$

Implemented with Matlab Reservoir Simulation Toolbox ([Lie et al. (14)]) Solver with automatic differentiation : no explicit programming of Jacobian

Discretization

In space: two-point finite volumes

Two-point finite volume scheme on rectangular mesh, additional unknowns at the centers of the faces on the interface At each OSWR iteration k, at each time step n, solve non-linear system over each subdomain i for

$$oldsymbol{u}_{h, au}^k = \left\{ (oldsymbol{u}_{K}^{n+1,k})_{K\in\mathcal{T}_i}, (oldsymbol{u}_{\sigma}^{n+1,k})_{\sigma\in\mathcal{E}_{i,\Gamma}}
ight\}$$

Implemented with Matlab Reservoir Simulation Toolbox ([Lie et al. (14)]) Solver with automatic differentiation : no explicit programming of Jacobian

In time: DG0

Piecewise constant functions, identical to backward Euler, with numerical integration for source term.

Non conforming time grids: Information on one time grid at the interface is passed to the other time grid at the interface using L2-projections.

Use an optimal projection algorithm

[Gander-Japhet-Maday-Nataf (05), Gander, Japhet (13)]

 $\begin{array}{lll} \text{Mobilities } \lambda_{o,i}(\boldsymbol{u}) = \boldsymbol{u}^2, \quad \text{and} \quad \lambda_{g,i}(\boldsymbol{u}) = 3(1-\boldsymbol{u})^2, \ i \in \{1,2\}, \\ \text{Capillary pressure } \pi_1(\boldsymbol{u}) = \ln(1-\boldsymbol{u}), \quad \text{and} \quad \pi_2(\boldsymbol{u}) = 0.5 - \ln(1-\boldsymbol{u}). \end{array}$

Ingla

 $\begin{array}{ll} \text{Mobilities } \lambda_{o,i}(u) = u^2, \quad \text{and} \quad \lambda_{g,i}(u) = 3(1-u)^2, \ i \in \{1,2\}, \\ \text{Capillary pressure } \pi_1(u) = \ln(1-u), \quad \text{and} \quad \pi_2(u) = 0.5 - \ln(1-u). \end{array}$

Innin-

Mobilities $\lambda_{o,i}(u) = u^2$, and $\lambda_{g,i}(u) = 3(1-u)^2$, $i \in \{1,2\}$, Capillary pressure $\pi_1(u) = \ln(1-u)$, and $\pi_2(u) = 0.5 - \ln(1-u)$.

Innin-

Mobilities $\lambda_{o,i}(u) = u^2$, and $\lambda_{g,i}(u) = 3(1-u)^2$, $i \in \{1,2\}$, Capillary pressure $\pi_1(u) = \ln(1-u)$, and $\pi_2(u) = 0.5 - \ln(1-u)$.

Innin_

Mobilities $\lambda_{o,i}(u) = u^2$, and $\lambda_{g,i}(u) = 3(1-u)^2$, $i \in \{1,2\}$, Capillary pressure $\pi_1(u) = \ln(1-u)$, and $\pi_2(u) = 0.5 - \ln(1-u)$.

Evolution of saturation (t = 100, 200, 350, 480)

Convergence curve

(nría-

A posteriori error estimates: overview

$$\underbrace{||\boldsymbol{u} - \tilde{\boldsymbol{u}}_{h\tau}^{k}||}_{\text{unknown}} \leq \underbrace{\boldsymbol{\eta}_{\text{SP}}^{k} + \boldsymbol{\eta}_{\text{TM}}^{k} + \boldsymbol{\eta}_{\text{DD}}^{k}}_{\text{Fully computable estimators}}$$

(nria-

A posteriori error estimates: overview

$$\underbrace{||\boldsymbol{u} - \tilde{\boldsymbol{u}}_{h\tau}^{k}||}_{\text{unknown}} \leq \underbrace{\eta_{\text{SP}}^{k} + \eta_{\text{TM}}^{k} + \eta_{\text{DD}}^{k}}_{\text{Fully computable estimators}}$$

- Error estimators depend on H(div, Ω) flux and H¹(Ω) potential reconstruction [Vohralík (10), Pencheva-Vohralík-Wheeler-Wildey (13), Di Pietro, Vohralík, Yousef (15)]
- Separate (time, space) discretization and DD estimators : enables stopping criteria for DD iterations [Rey, Rey, Gosselet (14), Ern, Vohralík (15)]
- Extension to finite volume, Robin BC (no conformity) [Ali Hassan, Japhet, M. K., Vohralík (18)]
- In finite volume, $u_{h\tau}^k$ piecewise constant, so $\nabla u_{h\tau}^k = 0$, cannot be used for energy estimates

A posteriori error estimates: overview

$$\underbrace{||\boldsymbol{u} - \tilde{\boldsymbol{u}}_{h\tau}^{k}||}_{\text{unknown}} \leq \underbrace{\eta_{\text{SP}}^{k} + \eta_{\text{TM}}^{k} + \eta_{\text{DD}}^{k}}_{\text{Fully computable estimators}}$$

- Error estimators depend on H(div, Ω) flux and H¹(Ω) potential reconstruction [Vohralík (10), Pencheva-Vohralík-Wheeler-Wildey (13), Di Pietro, Vohralík, Yousef (15)]
- Separate (time, space) discretization and DD estimators : enables stopping criteria for DD iterations [Rey, Rey, Gosselet (14), Ern, Vohralík (15)]
- Extension to finite volume, Robin BC (no conformity) [Ali Hassan, Japhet, M. K., Vohralík (18)]
- In finite volume, $u_{h\tau}^k$ piecewise constant, so $\nabla u_{h\tau}^k = 0$, cannot be used for energy estimates

Main steps

- Saturation and flux reconstructions
- Bound error measure by computable estimates

Saturation and flux reconstruction

Post-processing of $\boldsymbol{u}_{h\tau}^k$

Each iteration k and at each time step, construct locally (per element)

- $\mathbf{q}_{h,i}^{n,k} \in \mathbf{RTN}_0(\Omega_i) \subset H(\operatorname{div}, \Omega_i)$ with fluxes matching that of $\varphi_i(\boldsymbol{u}_K^{n,k})$,
- Post-processed $\tilde{\varphi}_{h\tau,i}^k \in \mathbf{P}_2(\mathcal{T}_i)$, linear in time, and saturation $\tilde{\boldsymbol{u}}_{h\tau}^{n,k} = \varphi_i^{-1}(\tilde{\varphi}_{hi}^{k,n})$

Non–linearity: need to construct both $\tilde{\varphi}_{h\tau,i}^{k}$ and $\tilde{u}_{h\tau}^{n,k}$ ($\tilde{u}_{h\tau}^{n,k}$ for theory only).

into

Saturation and flux reconstruction

Post-processing of $\boldsymbol{u}_{h\tau}^k$

Each iteration k and at each time step, construct *locally* (per element)

- q^{n,k}_{h,i} ∈ RTN₀(Ω_i) ⊂ H(div, Ω_i) with fluxes matching that of φ_i(u^{n,k}_K),
- Post-processed $\tilde{\varphi}_{h\tau,i}^k \in \mathbf{P}_2(\mathcal{T}_i)$, linear in time, and saturation $\tilde{\boldsymbol{u}}_{h\tau}^{n,k} = \varphi_i^{-1}(\tilde{\varphi}_{hi}^{k,n})$

Non–linearity: need to construct both $\tilde{\varphi}_{h\tau,i}^{k}$ and $\tilde{u}_{h\tau}^{n,k}$ ($\tilde{u}_{h\tau}^{n,k}$ for theory only).

- So FV method, so $\tilde{\boldsymbol{u}}_{h\tau}^k \notin H^1(\Omega_i)$
- 8 Robin DD method so $\tilde{u}_{h\tau}^{k}$ jumps across Γ and no continuous flux approximation

Saturation and flux reconstructions:

- s^k_{hτ} : H¹(Ω)-conforming, continuous and piecewise linear in time. Modify on Γ to ensure continuity of capillary pressure
- σ^k_{hτ}: H(div, Ω)-conforming and local conservative in each element, piecewise constant in time. Solve coarse problem to ensure continuous flux across Γ.

Saturation post-processing and reconstruction

Ínnia -

Error estimators and error measures

Local estimators

Spatial disc. $\eta_{\text{SP},K,i}^{n,k} := 1/\pi h_{\mathcal{K}} \|\partial_t s_{h,\tau}^k + \nabla \cdot \sigma_h^{k,n}\|_{\mathcal{K}} + \|\nabla \varphi_i(s_{h,\tau}^k(\cdot, t_n)) + \mathbf{q}_{h,i}^{k,n}\|_{\mathcal{K}},$ Time disc. $\eta_{\text{TM},K,i}^{n,k}(t) := \|\nabla (\varphi_i(s_{h,\tau}^k(\cdot, t)) - \varphi_i(s_{h,\tau}^k(\cdot, t_n)))\|_{\mathcal{K}}$ DD error $\eta_{\text{DD},K,i}^{n,k} := \|\mathbf{q}_{h,i}^{n,k} - \sigma_h^{n,k}\|_{\mathcal{K}}$

Global versions $\eta_{\rm SP}^k$, $\eta_{\rm TM}^k$, $\eta_{\rm DD}^k$ built by summation over the mesh, the timesteps and the subdomains.

Can be extended to include effect of linearization for subdomain problem. See [Di Pietro, Vohralík, Yousef (15)].

Error estimators and error measures

Local estimators

Spatial disc. $\eta_{\text{SP},K,i}^{n,k} := 1/\pi h_{\mathcal{K}} \|\partial_{t} s_{h,\tau}^{k} + \nabla \cdot \sigma_{h}^{k,n}\|_{\mathcal{K}} + \|\nabla \varphi_{i}(s_{h,\tau}^{k}(\cdot,t_{n})) + \mathbf{q}_{h,i}^{k,n}\|_{\mathcal{K}},$ Time disc. $\eta_{\text{TM},K,i}^{n,k}(t) := \|\nabla (\varphi_{i}(s_{h,\tau}^{k}(\cdot,t)) - \varphi_{i}(s_{h,\tau}^{k}(\cdot,t_{n})))\|_{\mathcal{K}}$ DD error $\eta_{\text{DD},K,i}^{n,k} := \|\mathbf{q}_{h,i}^{n,k} - \sigma_{h}^{n,k}\|_{\mathcal{K}}$

Global versions $\eta_{\rm SP}^k$, $\eta_{\rm TM}^k$, $\eta_{\rm DD}^k$ built by summation over the mesh, the timesteps and the subdomains.

Can be extended to include effect of linearization for subdomain problem. See [Di Pietro, Vohralík, Yousef (15)].

Error measures for the approximate solution

Exact solution $\boldsymbol{u} \in H^1(0, T; H^{-1}(\Omega))$, with $\varphi_i(\boldsymbol{u}|_{\Omega_i}) \in L^2(0, T; H^1(\Omega_i))$, (i = 1, 2).

Strong distance $\|\boldsymbol{u} - \tilde{\boldsymbol{u}}_{h,\tau}^{k}\|_{\sharp}$, linked to energy norm

Weak distance $\|\boldsymbol{u} - \boldsymbol{s}_{h,\tau}^{k}\|_{\flat}$, linked to dual norm of the residual

Actually defined for any function in the above spaces.

A posteriori error estimate

Let L_{φ_i} Lipschitz constant of φ_i , $L_{\varphi} := \max(L_{\varphi_1}, L_{\varphi_2})$, Initial condition estimator: $\eta_{\text{IC}}^k := \| u_0 - s_{h,\tau}^k(\cdot, 0) \|_{H^{-1}(\Omega)}$,

Theorem

• Error bounds in "weak distance"

$$\| \underline{\textit{u}} - s^k_{h,\tau} \|_{\flat} \leq \sqrt{L_{\varphi}/2} \sqrt{2e^{\tau} - 1} \eta^k_{\mathrm{IC}} + \eta^k_{\mathrm{SP}} + \eta^k_{\mathrm{TM}} + \eta^k_{\mathrm{DD}}$$

1 main -

A posteriori error estimate

Let L_{φ_i} Lipschitz constant of φ_i , $L_{\varphi} := \max(L_{\varphi_1}, L_{\varphi_2})$, Initial condition estimator: $\eta_{\text{IC}}^k := \| u_0 - s_{h,\tau}^k(\cdot, 0) \|_{H^{-1}(\Omega)}$,

Theorem

Error bounds in "weak distance"

$$\| \underline{u} - s_{h,\tau}^k \|_{\flat} \leq \sqrt{L_{\varphi}/2} \sqrt{2e^{\tau} - 1} \eta_{\mathrm{IC}}^k + \eta_{\mathrm{SP}}^k + \eta_{\mathrm{TM}}^k + \eta_{\mathrm{DD}}^k$$

• Error bound in "strong distance" Assume $\bar{\varphi} \in L^2(0, T, H_0^1(\Omega))$, with $\bar{\varphi}|_{\Omega_i} := \varphi_i(u_i) - \varphi_i(s_{h,\tau_i}^k)$, i = 1, 2. Then

$$\| \underline{u} - \widetilde{\underline{u}}_{h,\tau}^k \|_{\sharp} \leq \sqrt{L_{\varphi}/2} \sqrt{2e^{\tau} - 1} \eta_{\mathrm{IC}}^k + \eta_{\mathrm{SP}}^k + \eta_{\mathrm{TM}}^k + \eta_{\mathrm{DD}}^k + \| \widetilde{\underline{u}}_{h,\tau}^k - s_{h,\tau}^k \|_{\sharp}$$

A posteriori error estimate

Let L_{φ_i} Lipschitz constant of φ_i , $L_{\varphi} := \max(L_{\varphi_1}, L_{\varphi_2})$, Initial condition estimator: $\eta_{\text{IC}}^k := \| u_0 - s_{h,\tau}^k(\cdot, 0) \|_{H^{-1}(\Omega)}$,

Theorem

Error bounds in "weak distance"

$$\|\boldsymbol{u} - \boldsymbol{s}_{h,\tau}^k\|_{\flat} \leq \sqrt{L_{\varphi}/2}\sqrt{2\boldsymbol{e}^{\mathrm{T}} - 1}\eta_{\mathrm{IC}}^k + \eta_{\mathrm{SP}}^k + \eta_{\mathrm{TM}}^k + \eta_{\mathrm{DD}}^k$$

• Error bound in "strong distance" Assume $\bar{\varphi} \in L^2(0, T, H_0^1(\Omega))$, with $\bar{\varphi}|_{\Omega_i} := \varphi_i(\underline{u}_i) - \varphi_i(s_{h,\tau_i}^k)$, i = 1, 2. Then

$$\| \frac{\mathbf{u}}{\mathbf{u}} - \tilde{\mathbf{u}}_{h,\tau}^k \|_{\sharp} \leq \sqrt{L_{\varphi}/2} \sqrt{2e^{\tau} - 1} \eta_{\mathrm{IC}}^k + \eta_{\mathrm{SP}}^k + \eta_{\mathrm{TM}}^k + \eta_{\mathrm{DD}}^k + \| \tilde{\mathbf{u}}_{h,\tau}^k - s_{h,\tau}^k \|_{\sharp}$$

Remark

- Proof follows from [Di Pietro, Vohralík, Yousef (15)]
- Assumption above means capillary pressure must be continuous.

Two rock-types, flow across the interface

Subdomain decomposition and snapshot of saturation

Evolution of the spatial, temporal, and DD estimators vs number of Robin OSWR iterations

Innia

Two rock-types, flow across the interface

Subdomain decomposition and snapshot of saturation

Evolution of the spatial, temporal, and DD estimators vs number of Robin OSWR iterations

Global error

M. Kern (INRIA - Paris 13)

Stopping criteria for DD

Two rock-types, flow across the interface

Subdomain decomposition and snapshot of saturation

Evolution of the spatial, temporal, and DD estimators vs number of Robin OSWR iterations

nalo

Two rock-types, flow along the interface

Saturation (left), total error estimator (center) and DD error estimator (right)

India

Some references

T.T. P. Hoang, J. Jaffré, C. Japhet, M. K., J. E. Roberts

Space-Time Domain Decomposition Methods for Diffusion Problems in Mixed Formulations

SIAM J. Num. Anal., 51 (6), (2013) pp.3532-3559

D. A. Di Pietro, M. Vohralík, S. Yousef

Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem.

Math. Comp. 84, 291 (2015), 153-186

S. Ali Hassan, C. Japhet, M. K., M. Vohralík

A Posteriori Stopping Criteria for Optimized Schwarz Domain Decomposition Algorithms in Mixed Formulations

Comp. Meth. Appl. Math., vol. 18 (3), pp. 495-520, 2018

E. Ahmed, C. Japhet, M. K.

A Finite Volume Schwarz Algorithm for Two-Phase Immiscible Flow with Different Rock Types In preparation

E. Ahmed, S. Ali Hassan, C. Japhet, M. K., M. Vohralík

A posteriori error estimates and stopping criteria for space-time domain decomposition for two-phase flow between different rock types

SMAI J. Comp. Math., in review

Post-processing $\tilde{\boldsymbol{u}}_{h\tau,i}^{k}$ of $\boldsymbol{u}_{h\tau,i}^{k}$

Each iteration k and at each time step

• Construct $\mathbf{q}_{h,i}^{n,k} \in \mathbf{RTN}_0(\Omega_i) \subset H(\operatorname{div},\Omega_i)$ such that

 $(\mathbf{q}_{h,i}^{n,k} \cdot \mathbf{n}_i, \mathbf{1})_{\sigma} = \tau_{\sigma}(\varphi_i(\mathbf{u}_K^{n,k}) - \varphi_i(\mathbf{u}_L^{n,k})), \quad \forall K \in \mathcal{T}_i, \forall L \in \mathcal{N}(K)$

② Construct locally $\tilde{\varphi}^k_{h\tau,i} \in \mathbf{P}_2(\mathcal{T}_i)$ by

$$\begin{aligned} -\nabla \tilde{\varphi}_{h,i}^{k,n}|_{\mathcal{K}} &= \mathbf{q}_{h,i}^{k,n}|_{\mathcal{K}}, \quad \forall \mathcal{K} \in \mathcal{T}_{h,i}, \\ \frac{(\tilde{\varphi}_{h,i}^{k,n}, \mathbf{1})_{\mathcal{K}}}{|\mathcal{K}|} &= \varphi(\mathbf{u}_{\mathcal{K}}^{k,n}), \quad \forall \mathcal{K} \in \mathcal{T}_{h,i}. \end{aligned}$$

Define the post-processed saturation, piecewise linear in time, by (for theory only)

$$\tilde{\boldsymbol{u}}_{h,i}^{k,n,} := \varphi_i^{-1}(\tilde{\varphi}_{hi}^{k,n}).$$

 $\widetilde{u}_{h,i}^{k,n} \notin H^1(\Omega_i)$ (same for $\widetilde{\varphi}_{h,i}^{n,k}$).

Innin.

Reconstruction of a conforming saturation

Onstruct piecewise polynomial $\hat{\varphi}_{h,i}^{n,k}$ by

$$\hat{\varphi}_{h,i}^{n,k}(x) = \mathcal{I}_{\mathsf{av}}(\tilde{\varphi}_{h,i}^{n,k})(x)$$

where $\mathcal{I}_{av}(p)(\mathbf{a}) = \frac{1}{|\mathcal{T}_{\mathbf{a}}|} \sum_{K \in \mathcal{T}_{\mathbf{a}}} p|_{K}(\mathbf{a})$. Cannot work directly with $\tilde{\boldsymbol{u}}_{h,i}^{k,n}$, as it is not a polynomial.

3 Define $s_{h,i}^{n,k} \in H^1(\Omega_i)$ by $s_{h,i}^{n,k} = \varphi^{-1}(\hat{\varphi}_{h,i}^{n,k})$ at the Lagrange DOFs.

• Modify $s_{h,i}^{n,k}$ to satisfy • $\bar{\pi_1}(s_{h,i}^{n,k}) = \bar{\pi_2}(s_{h,2}^{n,k})$ at all nodes on Γ , • $\frac{1}{|\mathcal{K}|}(s_{h,i}^{n,k}, 1) = \boldsymbol{u}_{\mathcal{K}}^{n,k}, \quad \forall \mathcal{K} \in \mathcal{T}_i$ (use a bubble function)

Equilibrated flux reconstruction $\sigma_{h\tau}^{k}$

Build $\sigma_{h\tau}^k \in P^0_{\tau}(H(\operatorname{div}, \Omega))$ such that

$$(\operatorname{div} \boldsymbol{\sigma}_{h}^{n,k}, 1)_{K} = (-\frac{\boldsymbol{u}_{K}^{n+1,k} - \boldsymbol{u}_{k}^{n,k}}{\Delta t}, 1)_{K}, \quad \forall K \in \mathcal{T}.$$

• Set $\boldsymbol{\sigma}_{h,i}^{n,k} = \mathbf{q}_{h,i}^{n,k} \in H(\operatorname{div}, \Omega_i).$

Compute "mass balance misfit" across F

$$\mathbf{r}_{K} = (\frac{\boldsymbol{u}_{K}^{n+1,k} - \boldsymbol{u}_{k}^{n,k}}{\Delta t}, 1)_{\Omega_{i}} + \langle \{\!\!\{\mathbf{q}_{K}^{n,k} \cdot \boldsymbol{n}_{\partial\Omega_{i}}\}\!\!\}, 1\rangle_{\partial\Omega_{i}}, \forall K \in \mathcal{T}$$

- Solve a coarse least squares problem to redistribute r to boundaries of bands across interface
- Solve local (well posed) Neumann problems in each band to recreate mass balance

