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• A Grand Challenge of our era: tradeoffs between 
statistical inference and computation
– most data analysis problems have a time budget
– and they’re often embedded in a control problem 

• Optimization has provided the computational model 
for this effort (computer science, not so much)
– it’s provided the algorithms and the insights

• Statistics has quite a few good lower bounds
– which have delivered fundamental understanding
– placing them in contact with computational lower bounds 

will deliver further fundamental understanding
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• Modern large-scale statistics has posed new 
challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel—
distributed platforms, etc



Statistics and Computation (cont)

• Modern large-scale statistics has posed new 
challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel—
distributed platforms, etc

• Current focus: what can we do with the following 
ingredients?
– gradients
– stochastics
– acceleration



Nonconvex Optimization in Machine Learning

• Bad local minima used to be thought of as the main 
problem on the optimization side of machine 
learning

• But many machine learning architectures either 
have no local minima (see list later), or stochastic 
gradient seems to have no trouble (eventually) 
finding global optima

• But saddle points abound in these architectures, 
and they cause the learning curve to flatten out, 
perhaps (nearly) indefinitely



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



Part I: How to Escape Saddle Points 
Efficiently

with Chi Jin, Rong Ge, Sham Kakade, and Praneeth 
Netrapalli



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:

min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.
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Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).
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Some Well-Behaved Nonconvex Problems 

•  PCA, CCA, Matrix Factorization 
•  Orthogonal Tensor Decomposition (Ge, Huang, Jin, 

Yang, 2015) 
•  Complete Dictionary Learning (Sun et al, 2015) 
•  Phase Retrieval (Sun et al, 2015) 
•  Matrix Sensing (Bhojanapalli et al, 2016; Park et al, 

2016) 
•  Symmetric Matrix Completion (Ge et al, 2016) 
•  Matrix Sensing/Completion, Robust PCA (Ge, Jin, 

Zheng, 2017) 

•  The problems have no spurious local minima and all 
saddle points are strict 

 



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

GD Converges to FOSP (Nesterov, 1998)

For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.
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Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Only adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

PGD Converges to SOSP (This Work)

For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`) and

proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)
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Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!

(Based on an analysis of two nearly coupled sequences)
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Next Questions

• Does acceleration help in escaping saddle points?
• What other kind of stochastic models can we use to 

escape saddle points?
• How do acceleration and stochastics interact?

• To address these questions we need to understand 
develop a deeper understanding of acceleration than 
has been available in the literature to date



Part I: Variational, Hamiltonian and 
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and Michael Betancourt
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Interplay between Differentiation and 
Integration

• The 300-yr-old fields: Physics, Statistics
– cf. Lagrange/Hamilton, Laplace expansions, saddlepoint 

expansions
• The numerical disciplines

– e.g.,. finite elements, Monte Carlo
• Optimization?

– to date, almost entirely focused on differentiation



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology



Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0
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General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



Mysteries

• Why can’t we discretize the dynamics when we are
using exponentially fast clocks?

• What happens when we arrive at a clock speed that
we can discretize?

• How do we discretize once it’s possible?

• The answers are to be found in symplectic
integration



Symplectic Integration 

•  Consider discretizing a system of differential 
equations obtained from physical principles 

•  Solutions of the differential equations generally 
conserve various quantities (energy, momentum, 
volumes in phase space) 

•  Is it possible to find discretizations whose solutions 
exactly conserve these same quantities? 

•  Yes! 
–  from a long line of research initiated by Jacobi, Hamilton, 

Poincare’ and others 

 



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Part II: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Acceleration in the Nonconvex Setting

Existing literature:

I AGD finds ε−SP in O(1/ε2) iterations [Ghadimi and Lan, 2016]

I Nested-loop gradient algorithm finds ε−SP in Õ(1/ε1.75) iterations

[Carmon et al, 2017]

I Nested-loop Hessian-vector algorithms finds ε−SOSP in Õ(1/ε1.75) iters

[Agarwal et al. 2016; Carmon et al 2016]

Question: Can AGD find ε−SOSP efficiently? Faster than GD?
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Problem Setup

Smooth Assumption: f (·) is smooth:

I `-gradient Lipschitz, i.e. ∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.
I ρ-Hessian Lipschitz, i.e. ∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Goal: find second-order stationary point (SOSP):

∇f (x) = 0, λmin(∇2f (x)) ≥ 0.

Relaxed version: ε-second-order stationary point (ε-SOSP):

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε
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Algorithm

Perturbed Accelerated Gradient Descent (PAGD)

1. for t = 0, 1, . . . do

2. if ‖∇f (xt)‖ ≤ ε and no perturbation in last T steps then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. yt ← xt + (1− θ)vt

5. xt+1 ← yt − η∇f (yt); vt+1 ← xt+1 − xt

6. if f (xt) ≤ f (yt) + 〈∇f (yt), xt − yt〉 − γ
2
‖xt − yt‖2 then

7. xt+1 ← NCE(xt , vt , s); vt+1 ← 0

I Perturbation (line 2-3);

I Standard AGD (line 4-5);

I Negative Curvature Exploitation (NCE, line 6-7)
I 1) simple (two steps), 2) auxiliary. [inspired by Carmon et al. 2017]
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Convergence Result

PAGD Converges to SOSP Faster (Jin, Netrapalli and Jordan, 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ
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The Hamiltonian

GD: Function value f (xt) decreases monotonically. Not true for AGD.

vt

For AGD, in the convex case, the Hamiltonian decreases monotonically:

Et = f (xt) +
1

2η
‖vt‖2

In the nonconvex case, this isn’t true, but it is “nearly true”; i.e., the

non-monotonicity is small enough such that NCE suffices to ensure progress
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Part III: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett
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Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped vs Underdamped

• Classical overdamped Langevin diffusion

• Underdamped Langevin diffusion



Results

• Recent result:  for log-concave functions, the 
convergence rate of classical overdamped Langevin
diffusion is                  (Dalalyan, 2015, Durmus & 
Moulines, 2016)

O(d/✏2)



Results

• Recent result:  for log-concave functions, the 
convergence rate of classical overdamped Langevin
diffusion is                  (Dalalyan, 2015, Durmus & 
Moulines, 2016)

• We’ve studied an underdamped Langevin diffusion and 
shown that the convergence rate improves to                    
(Cheng, Chatterji, Bartlett & Jordan, 2017) 

O(d/✏2)

O(
p
d/✏)




