Intra-Droplet Patterning of RNA-protein Bodies (RNPs) in Phase Separated Systems

Kelsey Gasior, Jia Zhao, Jay Newby, M. Gregory Forest, and Amy Gladfelter

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Phase Transitions Exist Throughout Nature

Liquid De-mixing

Oil + Vinegar

Phase Transitions are observed in a variety of cells

BuGZ: spindle regulatory protein conserved from *Drosophila* **to humans**

Jiang et al., 2015

Disordered proteins (IDP/LCS)

Elbaum et al. 2015; Berry et al. 2015

Membrane-less Organelles in HeLa Cells

Intracellular Organization can occur via Phase Separations

Image courtesy of *Shin & Brangwynne* 2017

Different Multivalent Interactions Can Exist within the Same Droplet

Protein Binding Site

How do different protein-RNA complexes promote variable biophysical properties of droplet populations?

Modeling Protein-RNA Complexes Driving Droplet Formation

Phase Field Method and Cahn Hilliard Equation

Current Model

 $\frac{\partial(PR)}{\partial t} = \nabla \cdot (\lambda \downarrow PR \, \nabla (\delta F / \delta (PR) \,)) + c \downarrow 1 \, P \cdot R - c \downarrow 2 \, (PR) - c \downarrow 3 \, (PR) P + c \downarrow 4 \, (PRP)$

 $\frac{\partial(PRP)}{\partial t} = \nabla \cdot (\lambda \downarrow PRP \nabla (\delta F / \delta (PRP))) + c \downarrow 3 (PR) P - c \downarrow 4 (PRP)$

 $\frac{\partial P}{\partial t} = \nabla \cdot (\lambda \downarrow P \nabla P) - c \downarrow 1 P \cdot R + c \downarrow 2 (PR) - c \downarrow 3 (PR) P + c \downarrow 4 (PRP)$

 $\partial R / \partial t = \nabla (\lambda \downarrow R \nabla R) - c \downarrow 1 P \cdot R + c \downarrow 2 (PR)$

λ
 $c \downarrow 1$ = Diffusion Parameters λ
 $c \downarrow 1$ = Rate of Protein and RNA association to form *PR* $c \downarrow 2$
 $c \downarrow 3$
 $c \downarrow 4$ = Rate at which *PR* disassociates= Rate of Protein and *PR* association to form *PRP*
= Rate at which *PRP* disassociates, giving *PR* and free Protein

P, R, PR, PRP= Unit-less Volume Fractions

Protein-RNA-Protein (PRP)

Quickly forming protein-RNA (PR) complexes and slowly forming protein-RNA-protein (PRP) complexes result in droplets dominated by the protein-RNA (PR) complex at the onset of phase separation

Reversible Molecular Interactions

c1 = Rate of association of protein and RNA to form PR complex

c2 = Rate of disassociation of PR complex resulting in free protein and RNA

c3 = Rate of association of protein and PR complex to form PRP complex

c4 = Rate of disassociation of PRP complex resulting in free protein and PR complex

Increasing the rate of the protein-RNA-protein (PRP) complex formation (c3) results in droplets dominated by the protein-RNA (PR) complex initially, but with an increase in PRP concentration as the system evolves

Initial Model

Increasing the rate of protein-RNA (PR) complex disassociation (c2) results in a system that is slow to phase separate and is slightly dominated by the protein-RNA-protein (PRP) at the onset of phase separation

Increasing the rate of protein-RNA (PR) complex disassociation (c2) AND the rate of protein-RNA-protein (PRP) formation (c3) results in a system where phase separation is driven by the protein-RNA-protein (PRP) complex

Changes in Droplet Composition Occur due to Changes in Protein-RNA (PR) Disassociation and Protein-RNA-Protein (PRP) Formation

At Time of Phase Separation

At t = 1000

If the stability of the protein-RNA (PR) complex is reduced slightly and the rate at which the protein-RNAprotein (PRP) complex is increased, the separation will be driven by the PR complex but droplets will be dominated by the PRP complex as the system evolves

Initial Model

Phase Dependent Diffusion

Phase Dependent Diffusion

 $\frac{\partial(PR)}{\partial t} = \nabla \cdot (\lambda \downarrow PR D \downarrow \phi \nabla (\delta F / \delta (PR))) + c \downarrow 1 P \cdot R - c \downarrow 2 (PR) - c \downarrow 3 (PR) P + c \downarrow 4 (PR)$

 $\frac{\partial(PRP)}{\partial t} = \nabla (\lambda \downarrow PRP D \downarrow \phi \nabla (\delta F / \delta (PRP))) + c \downarrow 3 (PR)P - c \downarrow 4 (PRP)$

Whi3 and CLN3

 $\frac{\partial P}{\partial t} = \nabla \cdot (\lambda \downarrow P D \downarrow \phi \nabla P) - c \downarrow 1 P \cdot R + c \downarrow 2 (PR) - c \downarrow 3 (PR)P + c \downarrow 4$ (PRP)

 $\partial R / \partial t = \nabla (\lambda \downarrow R D \downarrow \phi \nabla R) - c \downarrow 1 P \cdot R + c \downarrow 2 (PR)$

*□↓φ₽↓ϕ*0..973Ø*\$\$\$\$\$\$*

Images courtesy of Erin Langdon Figure courtes

Figure courtesy of Zhang et al.

Phase-dependent mobility creates an environment that continues to promote the reversible molecular interactions that form the protein-RNA complexes

Initial Model (phase dependent)

Initial Model (phase independent)

Final Thoughts

- Phase transitions are observed in lots of different cells.
- Proteins harboring intrinsically disordered regions are key for driving liquid-liquid phase separations. RNA can promote this phase separation by interacting with protein through RNA-binding domains.
- Reversible molecular interactions drive the phase separation.
- Competition for a shared resource can both alter the composition of the droplets at the time of phase separation and composition as the droplet system evolves.
- Phase-dependent mobility does not influence the initial properties of the droplets but instead creates smaller microenvironments that promote the existing molecular interactions.

Future Work

Future Work: Protein-Protein Interactions

Acknowledgments

Gladfelter Lab

Amy Gladfelter* Jean Smith Kevin Cannon Ben Woods Ben Stormo Anum Khan Jose Vargas Muniz Erin Langdon Therese Gerbich John Crutchley Grace McLaughlin*

Forest Group

Greg Forest* Jay Newby* Jia Zhao*

