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Phase Transitions Exist Throughout Nature
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Phase Transitions are observed in a variety of cells
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Intracellular Organization can occur

e

A Nonbiological Molecules
® e
o
® o
® o
@]
® o
Gas Liquid Solid
1/Temperature
B Intracellular Biomolecules
= __,\\
=
Z (
&
|\ Ve
= I]/

Soluble
molecules

Physiological
granules

Multivalency, Low Complexity

Pathological
aggregates

Weber & Brangwynne

Cell, 2012

via Phase Separations

Liquid Phase Condensation

o
00® @
o0 ©

Shin & Brangwynne 2017



Different protein characteristics can drive liquid-
liquid phase separations
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Different Multivalent Interactions Can Exist within the
Same Droplet
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How do different protein-RNA complexes promote variable
biophysical properties of droplet populations?



Modeling Protein-RNA Complexes Driving Droplet Formation
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Phase Field Method and Cahn Hilliard Equation
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Current Model
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Quickly forming protein-RNA (PR) complexes and slowly forming protein-RNA-protein (PRP) complexes
result in droplets dominated by the protein-RNA (PR) complex at the onset of phase separation
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Reversible Molecular Interactions

cl = Rate of association of protein and RNA to form PR complex

c2 = Rate of disassociation of PR complex resulting in free protein and RNA
c3 = Rate of association of protein and PR complex to form PRP complex

c4 = Rate of disassociation of PRP complex resulting in free protein and PR complex
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Increasing the rate of the protein-RNA-protein (PRP) complex formation (c3) results in droplets dominated by
the protein-RNA (PR) complex initially, but with an increase in PRP concentration as the system evolves
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Increasing the rate of protein-RNA (PR) complex disassociation (c2) results in a system that is slow to phase
separate and is slightly dominated by the protein-RNA-protein (PRP) at the onset of phase separation
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Increasing the rate of protein-RNA (PR) complex disassociation (c2) AND the rate of protein-RNA-protein (PRP)
formation (c3) results in a system where phase separation is driven by the protein-RNA-protein (PRP) complex
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PRP Formation Rate (c3)

Changes in Droplet Composition Occur due to Changes in Protein-RNA (PR)
Disassociation and Protein-RNA-Protein (PRP) Formation
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If the stability of the protein-RNA (PR) complex is reduced slightly and the rate at which the protein-RNA-
protein (PRP) complex is increased, the separation will be driven by the PR complex but droplets will be
dominated by the PRP complex as the system evolves
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Phase Dependent Diffusion



Phase Dependent Diffusion
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Phase Independent Mobility | Phase Independent Mobility

Phase Dependent Mobility
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PRP Formation Rate (c3)
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Phase-dependent mobility creates an environment that continues to promote the reversible molecular
interactions that form the protein-RNA complexes
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Final Thoughts

Phase transitions are observed in lots of different cells.

Proteins harboring intrinsically disordered regions are key for driving liquid-liquid phase
separations. RNA can promote this phase separation by interacting with protein through RNA-
binding domains.

Reversible molecular interactions drive the phase separation.

Competition for a shared resource can both alter the composition of the droplets at the time of
phase separation and composition as the droplet system evolves.

Phase-dependent mobility does not influence the initial properties of the droplets but instead
creates smaller microenvironments that promote the existing molecular interactions.



Future Work




Future Work: Protein-Protein Interactions
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