
Coherence-Pattern Guided Compressive Sensing
with Unresolved Grids

Albert Fannjiang 1 Wenjing Liao 2

1Department of Mathematics, University of California, Davis

2Department of Mathematics, Duke University

Selected papers from the SIAM Journal on Imaging Sciences
SIAM Conference on Imaging Science

May 24, 2016



Compressive sensing

Find sparse solution to an underdetermined linear system:

I Pioneering work: Candès, Romberg and Tao 2004, Donoho
2004, . . .

I A: random rows of DFT matrix, i.i.d. gaussian, . . .

Benefit to imaging: save number of measurements/sensors



Source localization with sensor array

point sources
location: ωj

amplitude: cj

far field

B
B
B

N sensors

aperture: L

Source locations and amplitudes: {(ωj , cj), j = 1, . . . , s}
Sensor locations: tk ∈ (0, L), k = 1, . . . ,N

Signal model: at the sensor located at tk

yk =
∑s

j=1 cje
−2πitkωj︸ ︷︷ ︸

signal received by the kth sensor

+ ek︸︷︷︸
measurement noise

1Fannjiang, Strohmer and Yan 2010



Resolution limit

Rayleigh Length (RL) = 1
Aperture = 1

L

Without additional information, we can only hope to recover
sources separated by one RL.



Grid model

Source located on the continuum of a bounded domain: i.e.
ωj ∈ [0, 1]

yk =
s∑

j=1

cje
−2πitkωj + ek , k = 1, . . . ,N

0 1ω1 ω2 ω3 ω4

1/M

Discretization: approximate ωj by the closest point on a regular
grid G = {(m − 1)/M,m = 1, . . . ,M}.

Amplitudes: Write x = {xm}Mm=1 ∈ CM where xm = cj whenever
(m − 1)/M is the closest grid point of ωj and zero otherwise.



Linear inverse problem

y = Ax + e

I Sensing matrix A ∈ CN×M with

Ak,m = e−2πitk (m−1)/M

k = 1, . . . ,N, m = 1, . . . ,M.

I e = measurement noise + gridding error



Gridding error

Refinement factor

F = RL
grid spacing = M/L: # grid points within one RL

Griding error

I arises from approximating sources by nearest grid points

I almost inversely proportional to refinement factor F
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Reconstruction on coarse grid: spacing = RL

OMP L1 minimization
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Compressive imaging

Goal: stably recover s sources from O(s) or O(s2) sensors

Condition: Sensing matrix A satisfies either condition:

I Restricted Isometry Property (RIP)

I Incoherence: Coherence of A := µ(A) = max
j 6=`

µ(j , `) ∼ 1/
√
N

µ(j , `) =
| < A(:, j),A(:, `) > |
‖A(:, j)‖2 · ‖A(:, `)‖2

[Foucart and Rauhut 2013] Suppose

1. grid spacing = RL, e.g., 1/M = 1/L,

2. {tk} are independently and uniformly chosen from [0, L],

then A satisfies RIP with high probability if N ≥ O(s ln4M).



Dilemma

Grid spacing = RL

Sensing matrix A satisfies RIP and incoherence but gridding error
is large

Grid spacing � RL

Gridding error is small but A is highly coherent.



Compressive imaging on fine grid

OMP L1 minimization
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Post-processing of L1 minimization

I Hard thresholding

L1 solution Select the s largest spikes
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I K means clustering

Select the 2s largest spikes K means
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Coherence pattern of A on fine grid

pairwise coherence pattern

100*4000 matrix with F = 20 & coherence = 0.99566
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Left: A∗A; right: average µ(j , `) versus separation of the jth and the `th

column.

µ(A) = max
j 6=`

µ(j , `) = 0.996 ≈ 1 when F = 20.

I large pairwise coherence only occurs at adjacent columns.
I pairwise coherence is small if two columns are separated by 1

RL.



Summary of our work

I Define coherence band

I Propose techniques of band exclusion and local optimization

I Embed these techniques into standard compressive sensing
algorithms

I Prove approximate support recovery



Coherence band

Coherence band: Let η ∈ (0, 1). Define the η-coherence band of
Column k to be the set

Bη(k) = {i | µ(i , k) > η},

and the η-coherence band of the column set S to be the set

Bη(S) = ∪k∈SBη(k).

Double coherence band:

B(2)
η (k) := Bη(Bη(k)) = ∪j∈Bη(k)Bη(j)

B(2)
η (S) := Bη(Bη(S)) = ∪k∈SB(2)

η (k)



Technique I: Band exclusion(BE)

Idea: exclude the double coherence band of recovered objects

Example:

?

exact
recovered

2RL

?
2RL



Band Excluding Orthogonal Matching Pursuit (BOMP)

Algorithm 1. BOMP

Input: A, y , s, η > 0
Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = arg maxi |〈rn−1,A(:, i)〉|, i /∈ B
(2)
η (Sn−1)

2) Sn = Sn−1 ∪ {imax}
3) xn = arg minz ‖Az − y‖2 s.t. supp(z) ∈ Sn

4) rn = y − Axn

Output: x s .



Theorem (Fannjiang and L.)

Let x be s-sparse and η > 0 be fixed. Suppose that

Bη(i) ∩ B(2)
η (j) = ∅, ∀i , j ∈ supp(x),

η(5s − 4)
xmax

xmin
+

5‖e‖2
2xmin

< 1

where xmax = maxk |xk |, xmin = mink |xk |. Let x̂ be the BOMP
reconstruction. Then every nonzero component of x̂ is in the
η-coherence band of a unique nonzero component of x .

I separation of sources ∼ 3 RL

I approximate support recovery ∼ 1 RL

I compression: for moderate SNR

η =
1√
N

N (# sensor) ∼ s2x2max/x
2
min

?

exactrecovered

?

?
?



Spectral compressive sensing

Duarte and Baraniuk 2011

Model Based Compressive Sensing

IHT: xn+1 = T s(xn + A∗(y − Axn))

SIHT: xn+1 = T s
model based(xn + A∗(y − Axn))

Coherence-inhibiting structured sparse approximation is
implemented by the heuristics of selecting the s largest, well

separated entries.



Technique II: Local optimization(LO)

Algorithm 2. Local Optimization (LO)

Input:A, y , η > 0, S0 = {i1, . . . , ik}
Iteration: For n = 1, 2, ..., k

1) xn = arg minz ‖Az − y‖2
supp(z) = (Sn−1\{in}) ∪ {jn}, jn ∈ Bη({in})

2) Sn = supp(xn)
Output: Sk

? ?

?
?

I LO is a residual reduction technique:

r(Sk) ≤ r(Sk−1) ≤ . . . ≤ r(S1) ≤ r(S0)

where r(S) = minsupp(z)⊂S ‖Az − y‖.



Band-excluding, Locally Optimized Orthogonal Matching
Pursuit (BLOOMP)

Algorithm 3. BLOOMP

Input: A, y , s, η > 0
Initialization: x0 = 0, r0 = y and S0 = ∅
Iteration: For n = 1, ..., s

1) imax = arg maxi |〈rn−1, ai 〉|, i /∈ B
(2)
η (Sn−1)

2) Sn = LO(Sn−1 ∪ {imax})
3) xn = arg minz ‖Az − y‖2 s.t. supp(z) ∈ Sn

4) rn = y − Axn

Output: x s .



BLO-based CS algorithms

Greedy algorithms

BLO Subspace Pursuit

BLO CoSaMP

BLO Iterative Hard Thresholding

L1 approach

BP-BLOT constrained L1 minimization

Lasso-BLOT L1 regularization



L1 approach to recover sources on a continuum

Candes and Fernandez-Granda 2012

‖xrec − x‖1 ≤ Constant · F 2· Noise

I Full Fourier measurements

I Minimum separation ≥ 4 RL

Tang, Bhaskar, Shah and Recht 2013

I Compressive Fourier measurements

I Exact recovery without noise

I Minimum separation ≥ 4 RL



minimum separation ≥ 3 RL, F= 50, SNR = 20

OMP BLOOMP
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BLO-based algorithms can handle larger dynamic range xmax/xmin

and have better stability to noise.



MUltiple SIgnal Classification (MUSIC) algorithm (Schmidt 1981)

I Full Fourier measurement

I Sources are recovered at the peaks of an imaging function
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1. Sources separated ≥ 2 RL: stable recovery.

2. Super-resolution: The noise tolerance of MUSIC obeys a
power law with respect to the minimum separation of sources.

1W. Liao and A. Fannjiang, “MUSIC for single-snapshot spectral estimation:

stability and super-resolution,”ACHA Vol. 40 No. 1, pp.33-67, 2016.
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Compressive sensing with highly redundant dictionary

y = Φx + e = ΦDα + e

I Φ is i.i.d. Gaussian matrix

I D is an oversampled, redundant DFT frame

Goal: recover x
Performance metric:

‖D(α− αrec)‖
‖Dα‖



Coherence band

Coherence bands of the DFT frame D and A = ΦD
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Analysis approach: frame-based L1 minimization

Candès, Eldar, Needell and Randal 2010

min
z
‖D∗z‖1 ‖Φz − y‖2 ≤ ε

Assumptions:

I Frame adapted restricted isometry
property

√

I Sparsity or compressibility of
analysis coefficients ×
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Unless with a tight frame, analysis coefficients have long tail.



Comparison

Stability and Compressibility

Error versus SNR Error versus # measurement

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

a
v
e
ra

g
e
 r

e
la

ti
v
e
 e

rr
o
r 

o
f 
th

e
 s

ig
n
a
l 
in

 1
0
0
 t
ri
a
ls

relative error of the signal versus SNR

 

 

SIHT(µ=0.1)
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relative error of the signal versus the number of measurements

 

 

SIHT(µ=0.1)
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relative error of the signal versus the number of measurements
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