A regularity result for the incompressible Euler equation with a free interface

I. Kukavica
joint with A. Tuffaha and V. Vicol

Scottsdale, AZ, December 7, 2015
Mini-symposium "Deterministic and Stochastic Aspects of Fluid
Dynamics"
2015 SIAM Conference on Analysis of Partial Differential
Equations

We address the local existence of solutions of the free-surface Euler equations

$$
\begin{aligned}
& u_{t}+u \cdot \nabla u+\nabla p=0 \text { in } \Omega(t) \times(0, T) \\
& \operatorname{div} u=0 \text { in } \Omega(t) \times(0, T) .
\end{aligned}
$$

The free boundary $\Gamma_{\mathrm{f}}=\Gamma_{\mathrm{f}}(t)$ (when the surface is a graph h) evolves according to the velocity field

$$
\partial_{t} h+v_{\text {hor }} \cdot \nabla h=v_{n}
$$

where n is the space dimension, while the boundary condition for the pressure reads

$$
p(x, t)=\epsilon \sigma(x, t) \text { on } \partial \Gamma_{\mathrm{f}} \times(0, T)
$$

where σ represents the surface tension.

Two dimensional problem (existence \& uniqueness): Nalimov 1974 local existence for analytic data: Shinbrot 1976
local existence irrotational flow finite depths (small data): Yosihara 1982
local existence linearized, stability condition $\nabla p \cdot n \leq 0$: Beale, Hou, and Lowengrub 1993
an example showing the stability condition is necessary: Ebin 1987 local existence for 2D flows for rotational flows - Taylor sign condition must hold: Wu 1997
local existence for 3D flows for rotational flows: Wu 1999
local existence with surface tension and zero surface tension limit:
Ambrose and Masmoudi, 2005, 2009
a priori estimates for local existence for rotational flows:
Christodoulou and Lindblad (2000)

Local existence in H^{3} with the Taylor condition: Shatah and Zeng 2008, Coutand and Shkoller, 2010

2D local existence in $H^{2.5+\delta}$ with the Taylor condition: K. and Tuffaha 2012

3D local existence in $H^{2.5+\delta}$ for rotational flows, Alazard, Burq, and
Zuily (2011)
Global existence results (rotational): Wu (2009, 2011), Germain, Masmoudi, and Shatah (2012), Ionesco and Pusateri (2013)

We may expect $H^{n / 2+1+\delta}$ as the optimal space which would permit local existence in space dimensions $n=2,3$.

True for irrotational (curl $u=0$) flows for two and three dimensional cases by a result due to Alazard, Burq, and Zuily (2011)
The proof was done by writing the velocity as a gradient of a potential (using irrotationality) and writing the system for the surface displacement and the restriction of the velocity on the free surface (as in Wu $(1997,1999)$).

Let $n \in\{2,3\}$ denote the space dimension. We consider the Euler equation on the domain

$$
\Omega=\mathbb{R}^{n-1} \times[0,1]
$$

with periodic boundary conditions along the x_{1}, \ldots, x_{n-1} directions with period 1 . We assume that the moving boundary is the top

$$
\Gamma_{1}=\mathbb{R} \times\left\{x_{n}=1\right\}
$$

while the rigid bottom is

$$
\Gamma_{0}=\mathbb{R} \times\left\{x_{n}=0\right\} .
$$

Denote by $v(x, t)=u(\eta(x, t), t)$ the Lagrangian velocity of the fluid and by $q(x, t)=p(\eta(x, t), t)$ the Lagrangian pressure.

The Euler equation in the Lagrangian formulation reads

$$
\begin{aligned}
& v_{t}^{i}+a_{i}^{k} \partial_{k} q=0 \text { in } \Omega \times(0, T), \quad i=1, \ldots, n \\
& a_{i}^{k} \partial_{k} v^{i}=0 \text { in } \Omega \times(0, T)
\end{aligned}
$$

The unknown coefficients a_{j}^{i} denote the $i j$ entry of the $n \times n$ matrix

$$
a=(\nabla \eta)^{-1}
$$

where η stands for the particle map

$$
\eta_{t}(x, t)=v(x, t) \quad \eta(x, 0)=x, \quad x \in \Omega .
$$

The Lagrangian map in turn determines the evolving domain
$\Omega(t)=\eta(\Omega, t)$. The coefficients a satisfy the evolution
$a_{t}=-a: \nabla v: a$ with $a(0)=I$.

On the top, we assume the no surface tension boundary condition

$$
q=0 \text { on } \Gamma_{1} \times(0, T)
$$

while on the stationary bottom we use

$$
v^{i} N^{i}=0 \text { on } \Gamma_{0} \times(0, T) ;
$$

where the vector

$$
N=\left(N^{1}, \ldots, N^{n}\right)
$$

represents the outward unit normal. In our simplified situation, we have

$$
N=(0, \ldots, 0,-1) \text { on } \Gamma_{0}
$$

and

$$
N=(0, \ldots, 0,1) \text { on } \Gamma_{1} .
$$

Also, denote $H=\left\{v \in L^{2}(\Omega)^{n}: \partial_{i} v^{i}=0\right.$ in $\left.\Omega,\left.v^{i} N^{i}\right|_{\Gamma_{0}}=0\right\}$.
The following is the main result.
Theorem (K.-Tuffaha-Vicol 2015) Let $n=3$, let Ω be as above, and let $\delta \in(0,0.5)$. Assume that $v(\cdot, 0)=v_{0} \in H^{2.5+\delta}(\Omega) \cap H$ satisfies

$$
\operatorname{curl} v_{0} \in H^{2+\delta}(\Omega)
$$

and that the associated initial pressure $q(\cdot, 0)$ satisfies the Rayleigh-Taylor condition

$$
\frac{\partial q}{\partial N}(x, 0) \leq-\frac{1}{C_{0}}<0
$$

for all $x \in \Gamma_{1}$.

Then there exists a unique solution (v, q, η) to the system such that

$$
\begin{aligned}
& \eta \in L^{\infty}\left([0, T] ; H^{3+\delta}(\Omega)\right) \cap C\left([0, T] ; H^{2.5+\delta}(\Omega)\right) \\
& v \in L^{\infty}\left([0, T] ; H^{2.5+\delta}(\Omega)\right) \cap C\left([0, T] ; H^{2+\delta}(\Omega)\right) \\
& v_{t} \in L^{\infty}\left([0, T] ; H^{2+\delta}(\Omega)\right) \\
& q \in L^{\infty}\left([0, T] ; H^{3+\delta}(\Omega)\right) \\
& q_{t} \in L^{\infty}\left([0, T] ; H^{2.5+\delta}(\Omega)\right)
\end{aligned}
$$

for some time $T>0$ depending on the initial data.

For irrotational flows: Alazard, Burq, and Zuily 2011.
2D case: K.-Tuffaha 2014 (all exponents shifted by -0.5).

In the talk, we'll go over the a priori estimates for $n=3$.
The a priori estimates can be made rigorous using the horizontal mollification procedure due to Coutand and Shkoller.

The first lemma gives a priori estimates on the coefficient matrix a and the particle map η. All the statements follow from

$$
\eta_{t}=v
$$

and

$$
a_{t}=-a: \nabla v: a
$$

(Recall: $\left.a=(\nabla \eta)^{-1}.\right)$

Lemma Assume that $\|\nabla v\|_{L^{\infty}\left([0, T] ; H^{1} \cdot 5+\delta(\Omega)\right)} \leq M$. If

$$
T \leq \frac{1}{C M}
$$

where C is a sufficiently large constant, depending on ϵ, the following statements hold:
(i) $\|\nabla \eta(\cdot, t)\|_{H^{1.5+\delta}(\Omega)} \leq C$ for $t \in[0, T]$,
(ii) $\|a(\cdot, t)\|_{H^{1.5+\delta}(\Omega)} \leq C$ (and thus also $\|a(\cdot, t)\|_{L^{\infty}(\Omega)} \leq C$) for $t \in[0, T]$,
(iii) for every $\epsilon \in(0,1]$ we have

$$
\|a-l\|_{H^{1.5+\delta}(\Omega)}^{2} \leq \epsilon
$$

and

$$
\left\|a: a^{T}-I\right\|_{H^{1.5+\delta}(\Omega)}^{2} \leq \epsilon .
$$

on $[0, T]$.

Pressure estimates

The following lemma provides elliptic estimates satisfied by the pressure.

Lemma Assume that $\|\nabla v\|_{L^{\infty}\left([0, T] ; H^{1.5+\delta}(\Omega)\right)} \leq M$. Then the pressure q satisfies

$$
\|q(t)\|_{H^{3+\delta}} \leq P+P \int_{0}^{t}\left\|q_{t}(s)\right\|_{H^{2+\delta}} d s, \quad t \in[0, T]
$$

where P is a polynomial in $\|V\|_{H^{2} .5+\delta},\|\eta\|_{H^{3+\delta}}$, and $\left\|v_{0}\right\|_{H^{2} .5+\delta}$, and

$$
\left\|q_{t}(t)\right\|_{H^{2} .5+\delta} \leq P+P \int_{0}^{t}\left\|q_{t}(s)\right\|_{H^{2+\delta}} d s, \quad t \in[0, T] .
$$

Applying $a_{i}^{j} \partial_{j}$ to the Euler equation and summing over $i, j=1,2,3$, we get

$$
a_{i}^{j} \partial_{j}\left(a_{i}^{k} \partial_{k} q\right)=-a_{i}^{j} \partial_{j} v_{t}^{i}=\partial_{t} a_{i}^{j} \partial_{j} v^{i}
$$

by the divergence condition. We may rewrite this as

$$
\partial_{k k} q=\partial_{t} a_{i}^{j} \partial_{j} v^{i}+\partial_{j}\left(\left(\delta_{j k}-a_{i}^{j} a_{i}^{k}\right) \partial_{k} q\right)
$$

where we used the Piola identity $\partial_{j} a_{i}^{j}=0$. This equation is supplemented with the boundary conditions $q=0$ on Γ_{1} and

$$
\partial_{i} q N^{i}=\left(\delta_{i k}-a_{i}^{k}\right) \partial_{k} q N^{i} \text { on } \Gamma_{0} \times(0, T) .
$$

Applying the elliptic regularity to the equation, we get

$$
\begin{aligned}
\|q\|_{H^{3+\delta}} \leq & C\|v\|_{H^{2} .5+\delta}^{2}+C\left(1+\|\eta\|_{H^{3+\delta}}^{8}\right)\|q\|_{H^{2+\delta}} \\
\leq & C\|v\|_{H^{2} .5+\delta}^{2}+C\left(1+\|\eta\|_{H^{3+\delta}}^{8}\right) \int_{0}^{t}\left\|q_{t}(s)\right\|_{H^{2+\delta}} d s \\
& +C\left(1+\|\eta\|_{H^{3+\delta}}^{8}\right)\left\|q_{t}(0)\right\|_{H^{2+\delta}} .
\end{aligned}
$$

The estimate for q_{t} is obtained from the system

$$
\begin{aligned}
\partial_{k k} q_{t}= & \partial_{t t} a_{i}^{j} \partial_{j} v^{i}+\partial_{t} a_{i}^{j} \partial_{j} v_{t}^{i}-\partial_{j}\left(\partial_{t} a_{i}^{j} a_{i}^{k} \partial_{k} q\right)-\partial_{j}\left(a_{i}^{j} \partial_{t} a_{i}^{k} \partial_{k} q\right) \\
& +\partial_{j}\left(\left(\delta_{j k}-a_{i}^{j} a_{i}^{k}\right) \partial_{k} q_{t}\right)
\end{aligned}
$$

with the boundary conditions $q_{t}=0$ on Γ_{1} and
$\partial_{i} q_{t} N^{i}=-\partial_{t} a_{i}^{k} \partial_{k} q N^{i}+\left(\delta_{i k}-a_{i}^{k}\right) \partial_{k} q_{t} N^{i}$ on Γ_{0} (skip).

Tangential estimates

In this section, we derive the tangential estimates on the solution ($v, \eta, a, q)$. For short, we denote

$$
S=\bar{\partial}^{2.5+\delta}
$$

where $\bar{\partial}=\left(I-\Delta_{2}\right)^{1 / 2}$ with $\Delta_{2}=\partial_{11}+\partial_{22}$.
Lemma For $t \in[0, T]$, we have

$$
\begin{aligned}
& \|S v(t)\|_{L^{2}}^{2}+\left\|a_{l}^{3}(t) S \eta^{\prime}(t)\right\|_{L^{2}\left(\Gamma_{1}\right)}^{2} \\
& \leq \int_{0}^{t} P\left(\|v\|_{H^{2} .5+\delta},\left\|v_{t}\right\|_{H^{2+\delta}},\|q\|_{H^{3+\delta}},\left\|q_{t}\right\|_{H^{2} .5+\delta},\|\eta\|_{H^{3+\delta}}\right) d s \\
& \quad+Q\left(\left\|v_{0}\right\|_{H^{2} \cdot 5+\delta}\right)
\end{aligned}
$$

where P and Q are polynomials in indicated arguments,

The proof is obtained by applying the differential operator S to the Euler equation leading to

$$
S v_{t}^{i}+S\left(a_{i}^{k} \partial_{k} q\right)=0
$$

We then multiply by $S v^{i}$, integrate, and sum over $i=1,2,3$ in order to obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|S v\|_{L^{2}}^{2}= & -\int_{\Omega} S\left(a_{i}^{k} \partial_{k} q\right) S v^{i} d x \\
= & -\int_{\Omega} S a_{i}^{k} \partial_{k} q S v^{i} d x-\int_{\Omega} a_{i}^{k} \partial_{k} S q S v^{i} d x \\
& -\int_{\Omega}\left(S\left(a_{i}^{k} \partial_{k} q\right)-S a_{i}^{k} \partial_{k} q-a_{i}^{k} \partial_{k} S q\right) S v^{i} d x=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

Then we estimate the three terms I_{1}, l_{2}, and l_{3}. The Taylor condition appears when treating the first term. The last term is handled by using Kato-Ponce type (double) commutators.

First, we write

$$
S=\sum_{m=1}^{2} S_{m} \partial_{m}+S_{0}
$$

where $S_{m}=-\left(-\Delta_{2}\right)^{0.25+\delta / 2} \partial_{m}$ for $m=1,2$ and
$S_{0}=\left(I-\Delta_{2}\right)^{0.25+\delta / 2}$. Using

$$
\partial_{m} a_{i}^{k}=-a_{l}^{k} \partial_{s} \partial_{m} \eta^{\prime} a_{i}^{s}, \quad m=1,2
$$

which follows by differentiating a : $\nabla \eta=I$, we may rewrite the term
$I_{1}=-\int_{\Omega} S a_{i}^{k} \partial_{k} q S v^{i} d x$ as

$$
\begin{aligned}
I_{1} & =-\sum_{m=1}^{2} \int_{\Omega} S_{m} \partial_{m} a_{i}^{k} \partial_{k} q S v^{i} d x-\int_{\Omega} S_{0} a_{i}^{k} \partial_{k} q S v^{i} d x \\
& =-\sum_{m=1}^{2} \int_{\Omega} S_{m}\left(a_{l}^{k} \partial_{s} \partial_{m} \eta^{\prime} a_{i}^{s}\right) \partial_{k} q S v^{i} d x-\int_{\Omega} S_{0} a_{i}^{k} \partial_{k} q S v^{i} d x
\end{aligned}
$$

In the leading term $-\sum_{m=1}^{2} \int_{\Omega} a_{l}^{k} S_{m} \partial_{s} \partial_{m} \eta^{\prime} a_{i}^{s} \partial_{k} q S v^{i} d x$, we integrate by parts in x_{s}. The boundary term uses Taylor (skip the rest).

Divergence-curl estimates for η and v

Finally we need divergence and curl estimates for both, η and v.
For any given matrix function $a(x)$, introduce the variable curl operator B_{a} acting on the vector function $f=\left(f^{1}, f^{2}, f^{3}\right)$ according to

$$
B_{a} f=\left[\begin{array}{c}
a_{2}^{k} \partial_{k} f^{3}-a_{3}^{k} \partial_{k} f^{2} \\
a_{3}^{k} \partial_{k} f^{1}-a_{1}^{k} \partial_{k} f^{3} \\
a_{1}^{k} \partial_{k} f^{2}-a_{2}^{k} \partial_{k} f^{1}
\end{array}\right] .
$$

Similarly, we introduce the variable divergence operator

$$
A_{a} f=a_{i}^{k} \partial_{k} v^{i}
$$

(If $a=l$, then B_{l} and A_{l} agree with the usual curl and divergence operators.)

We start by differentiating in space the Cauchy invariance

$$
\epsilon_{i j k} \partial_{j} v^{m} \partial_{k} \eta^{m}=\omega_{0}^{i}, \quad t \geq 0, \quad i=1,2,3
$$

obtaining

$$
\epsilon_{i j k} \partial_{j} v^{m} \nabla \partial_{k} \eta^{m}+\epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla v^{m}=\nabla \omega_{0}^{i}, \quad t \geq 0, \quad i=1,2,3 .
$$

Then we use the fundamental theorem of calculus:
$\epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla \eta^{m}=\int_{0}^{t}\left(\epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla \eta_{t}^{m}+\epsilon_{i j k} \partial_{k} \eta_{t}^{m} \partial_{j} \nabla \eta^{m}\right) d s, \quad i=1,2,3$.
The first term inside the integral sign may be rewritten as

$$
\begin{aligned}
& \epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla \eta_{t}^{m}=\epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla v^{m} \\
& \quad=-\epsilon_{i j k} \partial_{j} v^{m} \nabla \partial_{k} \eta^{m}+\nabla \omega_{0}^{i}, \quad i=1,2,3
\end{aligned}
$$

and we get
$\epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla \eta^{m}=\int_{0}^{t}\left(-\epsilon_{i j k} \partial_{j} v^{m} \partial_{k} \nabla \eta^{m}+\epsilon_{i j k} \partial_{k} v^{m} \partial_{j} \nabla \eta^{m}\right) d s+t \nabla \omega_{0}^{i}, \quad i=$
i.e.,

$$
\epsilon_{i j k} \partial_{k} \eta^{m} \partial_{j} \nabla \eta^{m}=2 \epsilon_{i j k} \int_{0}^{t} \partial_{k} v^{m} \partial_{j} \nabla \eta^{m} d s+t \nabla \omega_{0}^{i}, \quad i=1,2,3
$$

Applying the $H^{1+\delta}$ norms of both sides we have

$$
\begin{aligned}
\|\nabla \operatorname{curl} \eta\|_{H^{1+\delta}} \leq & C\|\eta\|_{H^{3+\delta}}\|I-\nabla \eta\|_{H^{1.5+\delta}} \\
& +C \int_{0}^{t}\|v\|_{H^{2.5+\delta}}\|\eta\|_{H^{3+\delta}} d s+C\left\|\omega_{0}\right\|_{H^{2+\delta}} .
\end{aligned}
$$

Then write $I-\nabla \eta$ as a time integral of its derivative, which is $-\nabla v$.
For divergence, we also use the fundamental theorem of calculus to obtain

$$
\begin{aligned}
\|\operatorname{div} \eta\|_{H^{2+\delta}} \leq & C \int_{0}^{t}\|v\|_{H^{2.5+\delta}}\|\eta\|_{H^{3+\delta}} d s+C \int_{0}^{t}\|\eta\|_{H^{3+\delta}}^{2}\|v\|_{H^{2} .5+\delta} d s \\
& +C\|\eta\|_{H^{3+\delta}} \int_{0}^{t}\|v\|_{H^{2} .5+\delta} d s+C \int_{0}^{t}\|v\|_{H^{2+\delta}} d s+C .
\end{aligned}
$$

Using the inequality

$$
\begin{aligned}
\|f\|_{H^{s}(\Omega)} \leq & C\|f\|_{L^{2}(\Omega)}+C\|\operatorname{curl} f\|_{H^{s-1}(\Omega)} \\
& +C\|\operatorname{div} f\|_{H^{s-1}(\Omega)}+C\left\|\left(\nabla_{2} f\right) \cdot N\right\|_{H^{s-1.5}(\partial \Omega)}
\end{aligned}
$$

we get

$$
\|\eta\|_{H^{3+\delta}} \leq C\|\eta\|_{L^{2}}+C\|\operatorname{curl} \eta\|_{H^{2+\delta}}+C\|\operatorname{div} \eta\|_{H^{2+\delta}}+C\left\|S \eta^{3}\right\|_{L^{2}\left(\Gamma_{1}\right)} .
$$

The bound on the last terms comes from the tangential estimate.

In order to obtain an estimate for curl v, we use the Cauchy invariance again and write

$$
(\operatorname{curl} v)^{i}=\epsilon_{i j k} \partial_{j} v^{m}=\epsilon_{i j k} \partial_{j} v^{m}\left(\delta_{k m}-\partial_{k} \eta^{m}\right)+\omega_{0}^{i}, \quad i=1,2,3
$$

from where, using the algebra property of $H^{1.5+\delta}$,

$$
\begin{aligned}
\|\operatorname{curl} v\|_{H^{1.5+\delta}} & \leq C\|\nabla v\|_{H^{1} .5+\delta} \sum_{k, m=1}^{3}\left\|\delta_{k m}-\partial_{k} \eta^{m}\right\|_{H^{1.5+\delta}}+\left\|\omega_{0}\right\|_{H^{1.5+\delta}} \\
& \leq C\|v\|_{H^{2.5+\delta}} \int_{0}^{t}\|v\|_{H^{2} .5+\delta} d s+\left\|\omega_{0}\right\|_{H^{1.5+\delta}} .
\end{aligned}
$$

For $\operatorname{div} v$ we also use the fundamental theorem of calculus, while the trace values of $v \cdot n\left(=v_{3}\right)$, needed in div-curl, are bounded using the tangential estimates.

