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We address the local existence of solutions of the free-surface Euler

equations

ut + u · ∇u +∇p = 0 in Ω(t)× (0,T )

div u = 0 in Ω(t)× (0,T ).

The free boundary Γf = Γf(t) (when the surface is a graph h) evolves

according to the velocity field

∂th + vhor · ∇h = vn

where n is the space dimension, while the boundary condition for the

pressure reads

p(x , t) = ǫσ(x , t) on ∂Γf × (0,T )

where σ represents the surface tension.



Two dimensional problem (existence & uniqueness): Nalimov 1974

local existence for analytic data: Shinbrot 1976

local existence irrotational flow finite depths (small data): Yosihara

1982

local existence linearized, stability condition ∇p · n ≤ 0: Beale, Hou,

and Lowengrub 1993

an example showing the stability condition is necessary: Ebin 1987

local existence for 2D flows for rotational flows - Taylor sign condition

must hold: Wu 1997

local existence for 3D flows for rotational flows: Wu 1999

local existence with surface tension and zero surface tension limit:

Ambrose and Masmoudi, 2005, 2009

a priori estimates for local existence for rotational flows:

Christodoulou and Lindblad (2000)



Local existence in H3 with the Taylor condition: Shatah and Zeng

2008, Coutand and Shkoller, 2010

2D local existence in H2.5+δ with the Taylor condition: K. and Tuffaha

2012

3D local existence in H2.5+δ for rotational flows, Alazard, Burq, and

Zuily (2011)

Global existence results (rotational): Wu (2009, 2011), Germain,

Masmoudi, and Shatah (2012), Ionesco and Pusateri (2013)



We may expect Hn/2+1+δ as the optimal space which would permit

local existence in space dimensions n = 2,3.

True for irrotational (curl u = 0) flows for two and three dimensional

cases by a result due to Alazard, Burq, and Zuily (2011)

The proof was done by writing the velocity as a gradient of a potential

(using irrotationality) and writing the system for the surface

displacement and the restriction of the velocity on the free surface (as

in Wu (1997,1999)).



Let n ∈ {2,3} denote the space dimension. We consider the Euler

equation on the domain

Ω = R
n−1 × [0,1]

with periodic boundary conditions along the x1, . . . , xn−1 directions

with period 1. We assume that the moving boundary is the top

Γ1 = R× {xn = 1}

while the rigid bottom is

Γ0 = R× {xn = 0}.

Denote by v(x , t) = u(η(x , t), t) the Lagrangian velocity of the fluid

and by q(x , t) = p(η(x , t), t) the Lagrangian pressure.



The Euler equation in the Lagrangian formulation reads

v i
t + ak

i ∂k q = 0 in Ω× (0,T ), i = 1, . . . ,n

ak
i ∂k v i = 0 in Ω× (0,T )

The unknown coefficients ai
j denote the ij entry of the n × n matrix

a = (∇η)−1

where η stands for the particle map

ηt(x , t) = v(x , t) η(x ,0) = x , x ∈ Ω.

The Lagrangian map in turn determines the evolving domain

Ω(t) = η(Ω, t). The coefficients a satisfy the evolution

at = −a : ∇v : a with a(0) = I.



On the top, we assume the no surface tension boundary condition

q = 0 on Γ1 × (0,T )

while on the stationary bottom we use

v iN i = 0 on Γ0 × (0,T ) ;

where the vector

N = (N1, . . . ,Nn)

represents the outward unit normal. In our simplified situation, we

have

N = (0, . . . ,0,−1) on Γ0

and

N = (0, . . . ,0,1) on Γ1.



Also, denote H = {v ∈ L2(Ω)n : ∂iv
i = 0 in Ω, v iN i |Γ0

= 0}.

The following is the main result.

Theorem (K.-Tuffaha-Vicol 2015) Let n = 3, let Ω be as above, and

let δ ∈ (0,0.5). Assume that v(·,0) = v0 ∈ H2.5+δ(Ω) ∩ H satisfies

curl v0 ∈ H2+δ(Ω)

and that the associated initial pressure q(·,0) satisfies the

Rayleigh-Taylor condition

∂q

∂N
(x ,0) ≤ −

1

C0
< 0

for all x ∈ Γ1.



Then there exists a unique solution (v ,q, η) to the system such that

η ∈ L∞([0,T ];H3+δ(Ω)) ∩ C([0,T ];H2.5+δ(Ω))

v ∈ L∞([0,T ];H2.5+δ(Ω)) ∩ C([0,T ];H2+δ(Ω))

vt ∈ L∞([0,T ];H2+δ(Ω))

q ∈ L∞([0,T ];H3+δ(Ω))

qt ∈ L∞([0,T ];H2.5+δ(Ω))

for some time T > 0 depending on the initial data.

For irrotational flows: Alazard, Burq, and Zuily 2011.

2D case: K.-Tuffaha 2014 (all exponents shifted by -0.5).



In the talk, we’ll go over the a priori estimates for n = 3.

The a priori estimates can be made rigorous using the horizontal

mollification procedure due to Coutand and Shkoller.

The first lemma gives a priori estimates on the coefficient matrix a

and the particle map η. All the statements follow from

ηt = v

and

at = −a : ∇v : a.

(Recall: a = (∇η)−1.)



Lemma Assume that ‖∇v‖L∞([0,T ];H1.5+δ(Ω)) ≤ M. If

T ≤
1

CM

where C is a sufficiently large constant, depending on ǫ, the following

statements hold:

(i) ‖∇η(·, t)‖H1.5+δ(Ω) ≤ C for t ∈ [0,T ],

(ii) ‖a(·, t)‖H1.5+δ(Ω) ≤ C (and thus also ‖a(·, t)‖L∞(Ω) ≤ C) for

t ∈ [0,T ],

(iii) for every ǫ ∈ (0,1] we have

‖a − I‖2
H1.5+δ(Ω) ≤ ǫ

and

‖a : aT − I‖2
H1.5+δ(Ω) ≤ ǫ.

on [0,T ].



Pressure estimates

The following lemma provides elliptic estimates satisfied by the

pressure.

Lemma Assume that ‖∇v‖L∞([0,T ];H1.5+δ(Ω)) ≤ M. Then the pressure q

satisfies

‖q(t)‖H3+δ ≤ P + P

∫ t

0

‖qt(s)‖H2+δ ds, t ∈ [0,T ]

where P is a polynomial in ‖v‖H2.5+δ , ‖η‖H3+δ , and ‖v0‖H2.5+δ , and

‖qt(t)‖H2.5+δ ≤ P + P

∫ t

0

‖qt(s)‖H2+δ ds, t ∈ [0,T ].



Applying a
j
i∂j to the Euler equation and summing over i , j = 1,2,3, we

get

a
j
i∂j(a

k
i ∂k q) = −a

j
i∂jv

i
t = ∂ta

j
i∂jv

i

by the divergence condition. We may rewrite this as

∂kk q = ∂ta
j
i∂jv

i + ∂j

(

(δjk − a
j
ia

k
i )∂k q

)

where we used the Piola identity ∂ja
j
i = 0. This equation is

supplemented with the boundary conditions q = 0 on Γ1 and

∂iqN i = (δik − ak
i )∂k qN i on Γ0 × (0,T ).



Applying the elliptic regularity to the equation, we get

‖q‖H3+δ ≤ C‖v‖2
H2.5+δ + C(1 + ‖η‖8

H3+δ )‖q‖H2+δ

≤ C‖v‖2
H2.5+δ + C(1 + ‖η‖8

H3+δ )

∫ t

0

‖qt(s)‖H2+δ ds

+ C(1 + ‖η‖8
H3+δ )‖qt(0)‖H2+δ .

The estimate for qt is obtained from the system

∂kk qt = ∂tta
j
i∂jv

i + ∂ta
j
i∂jv

i
t − ∂j(∂ta

j
ia

k
i ∂k q)− ∂j(a

j
i∂ta

k
i ∂k q)

+ ∂j

(

(δjk − a
j
ia

k
i )∂k qt

)

with the boundary conditions qt = 0 on Γ1 and

∂iqtN
i = −∂ta

k
i ∂k qN i + (δik − ak

i )∂k qtN
i on Γ0 (skip).



Tangential estimates

In this section, we derive the tangential estimates on the solution

(v , η,a,q). For short, we denote

S = ∂
2.5+δ

where ∂ = (I −∆2)
1/2 with ∆2 = ∂11 + ∂22.

Lemma For t ∈ [0,T ], we have

‖Sv(t)‖2
L2 + ‖a3

l (t)Sηl(t)‖2
L2(Γ1)

≤

∫ t

0

P(‖v‖H2.5+δ , ‖vt‖H2+δ , ‖q‖H3+δ , ‖qt‖H2.5+δ , ‖η‖H3+δ )ds

+ Q(‖v0‖H2.5+δ )

where P and Q are polynomials in indicated arguments.



The proof is obtained by applying the differential operator S to the

Euler equation leading to

Sv i
t + S(ak

i ∂k q) = 0.

We then multiply by Sv i , integrate, and sum over i = 1,2,3 in order to

obtain

1

2

d

dt
‖Sv‖2

L2 = −

∫

Ω

S(ak
i ∂k q)Sv i dx

= −

∫

Ω

Sak
i ∂k qSv i dx −

∫

Ω

ak
i ∂k SqSv i dx

−

∫

Ω

(

S(ak
i ∂k q)− Sak

i ∂k q − ak
i ∂k Sq

)

Sv i dx = I1 + I2 + I3.

Then we estimate the three terms I1, I2, and I3. The Taylor condition

appears when treating the first term. The last term is handled by

using Kato-Ponce type (double) commutators.



First, we write

S =
2

∑

m=1

Sm∂m + S0

where Sm = −(−∆2)
0.25+δ/2∂m for m = 1,2 and

S0 = (I −∆2)
0.25+δ/2. Using

∂mak
i = −ak

l ∂s∂mη
las

i , m = 1,2

which follows by differentiating a : ∇η = I, we may rewrite the term

I1 = −
∫

Ω
Sak

i ∂k qSv i dx as

I1 = −

2
∑

m=1

∫

Ω

Sm∂mak
i ∂k qSv i dx −

∫

Ω

S0ak
i ∂k qSv i dx

= −

2
∑

m=1

∫

Ω

Sm(a
k
l ∂s∂mη

las
i )∂k qSv i dx −

∫

Ω

S0ak
i ∂k qSv i dx

In the leading term −
∑2

m=1

∫

Ω
ak

l Sm∂s∂mη
las

i ∂k qSv i dx , we integrate

by parts in xs. The boundary term uses Taylor (skip the rest).



Divergence-curl estimates for η and v

Finally we need divergence and curl estimates for both, η and v .

For any given matrix function a(x), introduce the variable curl

operator Ba acting on the vector function f = (f 1, f 2, f 3) according to

Baf =





ak
2∂k f 3 − ak

3∂k f 2

ak
3∂k f 1 − ak

1∂k f 3

ak
1∂k f 2 − ak

2∂k f 1



 .

Similarly, we introduce the variable divergence operator

Aaf = ak
i ∂k v i .

(If a = I, then BI and AI agree with the usual curl and divergence

operators.)



We start by differentiating in space the Cauchy invariance

ǫijk∂jv
m∂kη

m = ωi
0, t ≥ 0, i = 1,2,3

obtaining

ǫijk∂jv
m∇∂kη

m + ǫijk∂kη
m∂j∇vm = ∇ωi

0, t ≥ 0, i = 1,2,3.

Then we use the fundamental theorem of calculus:

ǫijk∂kη
m∂j∇ηm =

∫ t

0

(

ǫijk∂kη
m∂j∇ηm

t + ǫijk∂kη
m
t ∂j∇ηm

)

ds, i = 1,2,3.

The first term inside the integral sign may be rewritten as

ǫijk∂kη
m∂j∇ηm

t = ǫijk∂kη
m∂j∇vm

= −ǫijk∂jv
m∇∂kη

m +∇ωi
0, i = 1,2,3

and we get

ǫijk∂kη
m∂j∇ηm =

∫ t

0

(

−ǫijk∂jv
m∂k∇ηm + ǫijk∂k vm∂j∇ηm

)

ds + t∇ωi
0, i = 1



i.e.,

ǫijk∂kη
m∂j∇ηm = 2ǫijk

∫ t

0

∂k vm∂j∇ηm ds + t∇ωi
0, i = 1,2,3.

Applying the H1+δ norms of both sides we have

‖∇ curl η‖H1+δ ≤ C‖η‖H3+δ‖I −∇η‖H1.5+δ

+ C

∫ t

0

‖v‖H2.5+δ‖η‖H3+δ ds + C‖ω0‖H2+δ .

Then write I −∇η as a time integral of its derivative, which is −∇v .

For divergence, we also use the fundamental theorem of calculus to

obtain

‖ div η‖H2+δ ≤ C

∫ t

0

‖v‖H2.5+δ‖η‖H3+δ ds + C

∫ t

0

‖η‖2
H3+δ‖v‖H2.5+δ ds

+ C‖η‖H3+δ

∫ t

0

‖v‖H2.5+δ ds + C

∫ t

0

‖v‖H2+δ ds + C.



Using the inequality

‖f‖Hs(Ω) ≤ C‖f‖L2(Ω) + C‖ curl f‖Hs−1(Ω)

+ C‖ div f‖Hs−1(Ω) + C‖(∇2f ) · N‖Hs−1.5(∂Ω)

we get

‖η‖H3+δ ≤ C‖η‖L2 + C‖ curl η‖H2+δ + C‖ div η‖H2+δ + C‖Sη3‖L2(Γ1).

The bound on the last terms comes from the tangential estimate.



In order to obtain an estimate for curl v , we use the Cauchy invariance

again and write

(curl v)i = ǫijk∂jv
m = ǫijk∂jv

m(δkm − ∂kη
m) + ωi

0, i = 1,2,3

from where, using the algebra property of H1.5+δ,

‖ curl v‖H1.5+δ ≤ C‖∇v‖H1.5+δ

3
∑

k,m=1

‖δkm − ∂kη
m‖H1.5+δ + ‖ω0‖H1.5+δ

≤ C‖v‖H2.5+δ

∫ t

0

‖v‖H2.5+δ ds + ‖ω0‖H1.5+δ .

For div v we also use the fundamental theorem of calculus, while the

trace values of v · n (= v3), needed in div-curl, are bounded using the

tangential estimates.
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