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We address the local existence of solutions of the free-surface Euler

equations

u+u-Vu+Vp=0inQ(t) x (0, T)
divu=0 inQ(f) x (0, T).

The free boundary 'y = () (when the surface is a graph h) evolves

according to the velocity field
Oth+ hor - Vh = vy

where nis the space dimension, while the boundary condition for the

pressure reads
p(x,t) =ec(x,t) ondlyx (0, T)

where o represents the surface tension.



Two dimensional problem (existence & uniqueness): Nalimov 1974
local existence for analytic data: Shinbrot 1976

local existence irrotational flow finite depths (small data): Yosihara
1982

local existence linearized, stability condition Vp - n < 0: Beale, Hou,
and Lowengrub 1993

an example showing the stability condition is necessary: Ebin 1987
local existence for 2D flows for rotational flows - Taylor sign condition
must hold: Wu 1997

local existence for 3D flows for rotational flows: Wu 1999

local existence with surface tension and zero surface tension limit:
Ambrose and Masmoudi, 2005, 2009

a priori estimates for local existence for rotational flows:
Christodoulou and Lindblad (2000)



Local existence in H® with the Taylor condition: Shatah and Zeng
2008, Coutand and Shkoller, 2010

2D local existence in H>5+% with the Taylor condition: K. and Tuffaha
2012

3D local existence in H>-5+9 for rotational flows, Alazard, Burg, and
Zuily (2011)

Global existence results (rotational): Wu (2009, 2011), Germain,
Masmoudi, and Shatah (2012), lonesco and Pusateri (2013)



We may expect H"/2+1+9 as the optimal space which would permit

local existence in space dimensions n = 2, 3.

True for irrotational (curl u = 0) flows for two and three dimensional
cases by a result due to Alazard, Burg, and Zuily (2011)

The proof was done by writing the velocity as a gradient of a potential
(using irrotationality) and writing the system for the surface
displacement and the restriction of the velocity on the free surface (as
in Wu (1997,1999)).



Let n € {2,3} denote the space dimension. We consider the Euler

equation on the domain
Q=R""x[0,1]

with periodic boundary conditions along the x, ..., x,_1 directions

with period 1. We assume that the moving boundary is the top
M =Rx{x,=1}

while the rigid bottom is
Mo =R x {x, =0}.

Denote by v(x, t) = u(n(x, t), t) the Lagrangian velocity of the fluid
and by g(x, t) = p(n(x, t), t) the Lagrangian pressure.



The Euler equation in the Lagrangian formulation reads

vi+aokg=0in Qx(0,T), i=1

geeey

o' =0 in Qx(0,T)
The unknown coefficients a]’ﬁ denote the ij entry of the n x n matrix
a=(Vn)™
where 7 stands for the particle map
ni(x, 1) = v(x, t) n(x,0) = x, x e Q.

The Lagrangian map in turn determines the evolving domain
Q(t) = n(Q, t). The coefficients a satisfy the evolution

ar=—a: Vv :awith a(0) = /.



On the top, we assume the no surface tension boundary condition
g=0onTy{x(0,7)
while on the stationary bottom we use
VIN'=0 on Ty x(0,T);
where the vector
N=(N',...,N"

represents the outward unit normal. In our simplified situation, we

have
N=(0,...,0,—1) onTy

and



Also, denote H = {v € L2(Q)": 9;v' = 0in Q,V/N'|r, = 0}.
The following is the main result.

Theorem (K.-Tuffaha-Vicol 2015) Let n = 3, let Q be as above, and
let s € (0,0.5). Assume that v(-,0) = vy € H?5+9(Q) N H satisfies

curl vo € H?M(Q)

and that the associated initial pressure q(-, 0) satisfies the

Rayleigh-Taylor condition

1
x,0)<—— <0
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forall x € I'q.



Then there exists a unique solution (v, g,n) to the system such that

n e L=([0, T]; H*T(Q)) N C([0, T]; H*°+%(Q))
v e L>=([0, T]; H*5+9(Q)) n C([0, T]; H?*%(Q))
ve € L=([0, T]; H?*9(Q))

q € L=([0, T]; H**°(Q))

g: € L=([0, T]; H*°*°(Q))

for some time T > 0 depending on the initial data.

For irrotational flows: Alazard, Burq, and Zuily 2011.

2D case: K.-Tuffaha 2014 (all exponents shifted by -0.5).



In the talk, we’'ll go over the a priori estimates for n = 3.

The a priori estimates can be made rigorous using the horizontal

mollification procedure due to Coutand and Shkoller.

The first lemma gives a priori estimates on the coefficient matrix a

and the particle map 7. All the statements follow from
n=YVv
and
a=—-a:Vv:a

(Recall: a= (Vn)~"))



Lemma Assume that ||V V| .o, ;#1545 () < M. If

1
<
7-_CM

where C is a sufficiently large constant, depending on ¢, the following
statements hold:

@) IV, )| rsisq) < Clort € [0, T],

(i) la(-, t)[| 415450y < C (and thus also ||a(-, t)[| =) < C) for
tel0,T],

(iii) for every € € (0, 1] we have

la—1[Fnss(qy < €
and
laza’ —Ifssq) < e

on [0, T].



Pressure estimates

The following lemma provides elliptic estimates satisfied by the

pressure.

Lemma Assume that [|VV/| (o, 1};H15+5(q)) < M. Then the pressure q

satisfies

t
la(O)l[rees < P+ P/o [9:(S)llkers ds,  t€[0,T]

where P is a polynomial in ||V||yes:s, ||| He+s, and || Vo||yes+s, @and

t
1GH (D) | ses < P+ P/O 1Gu(S)l|pes ds, £ [0, T].



Applying a’,:8,- to the Euler equation and summing over i,j = 1,2, 3, we
get

a0)(afokq) = ~aovi = ddo’
by the divergence condition. We may rewrite this as
akkq = 6,46,-v’ + 8]((5/';( — a{af‘)qu)

where we used the Piola identity c’),-af = 0. This equation is

supplemented with the boundary conditions ¢ = 0 on 'y and

DigN" = (61 — a)okgN' on To x (0, T).



Applying the elliptic regularity to the equation, we get

19lltses < ClIVIIZeses + C(1+ (1] 0:5) 1G]l s
t
< ClVlfescs + O+ lfes) [ la()lsess 05
+ C(1 + [101130+5)11Ge(0) | e+
The estimate for g; is obtained from the system
Qe = d V' + OrdOyvi — 0j(0radakokq) — 9(ddralokq)

+0;((0% — da)okqr)

with the boundary conditions g; = 0 on 'y and
AN’ = —0,850kgN" + (01 — @)IkqeN' on T (skip).



Tangential estimates

In this section, we derive the tangential estimates on the solution

(v,n, a,q). For short, we denote

S — 52‘54»6
where 0 = (I — Ap)"/2 with Ap = 941 + Oa2.
Lemma For t € [0, T], we have

ISv(OIE: + llaf (1) Sn' (1)1,

t
S/ PIVIireses, [ Villbess s [[Qlless s (|Gt eses [[ll ) dS
0
+ Q([[vol[es+5)

where P and Q are polynomials in indicated arguments.



The proof is obtained by applying the differential operator S to the

Euler equation leading to
Sv/ 4+ S(a*oxq) = 0.

We then multiply by Sv/, integrate, and sum over i = 1,2, 3 in order to

obtain

1d .
5 il SvIf: = — [ Stetorsyiax
=— / Sako,qSv' dx — / a9 SqSv' dx
Q Q
- / (S(aFokq) — Sakorg — a0k Sq) SV dx = Iy + b + 1.
Q

Then we estimate the three terms /i, kb, and /5. The Taylor condition
appears when treating the first term. The last term is handled by

using Kato-Ponce type (double) commutators.



First, we write

2
8= Snim+ So

m=1
where S;, = —(—A5)°25+9/29,, for m = 1,2 and

So = (I — £Ap)°25+9/2 Using
Oma = —afds0pm'as, m=1,2

which follows by differentiating a : V) = I, we may rewrite the term
h = — [, Sako,qSv' dx as

2
h=- Z/ Smamaf'(aquV/ ax —/ Soaf(akqsvi dx

2
— _Z/ Sm(afds0mn'as)okqSv’ dx—/ SoadxqSv' dx
m=1"% Q

In the leading term — Y2 Jo @ SmdsOmn' a$0kqSv' dx, we integrate

by parts in xs. The boundary term uses Taylor (skip the rest).



Divergence-curl estimates for  and v

Finally we need divergence and curl estimates for both, n and v.
For any given matrix function a(x), introduce the variable curl
operator B, acting on the vector function f = (!, f2, f3) according to
ag(r“)ka — aéakfz
Bafz agakﬂ — aﬁ‘&kﬁ

aﬁ‘aku — a’z‘akf‘

Similarly, we introduce the variable divergence operator
Aaf = aogv'.

(If a= 1, then B, and A, agree with the usual curl and divergence

operators.)



We start by differentiating in space the Cauchy invariance

€OV oHN™ = wh, t>0, i=1,2,3
obtaining

OV N + k" RVVT = Vwh,  t>0, i=1,28.

Then we use the fundamental theorem of calculus:
€Ok VN = /;(e,-,-kaknma,-vn{" + e,-jkaknfnﬁjVnm) as, i=1,2,83.
The first term inside the integral sign may be rewritten as

€Ok V" = €jOkn" O Vv

= —e VO™ + Vwy,  i=1,2,3

and we get

t .
e,-,-kakn’"ajvn’" = / (—G/jkaj v’”&kvn’" + e,-,-kﬁk v’"ajvn’") as + ti{), ="
0



ie.,
t .
E/jkaknmajvnm = 26,‘/'[(/ 8k v’"ajvn’" ds + tié,, i = 172, 3.
0
Applying the H'*% norms of both sides we have
IV curl || gi+s < C||nllge+s ||l — V1| g1.5+5
t
+ C/ V| 2545 ||| gas dS + Cllwol| ess -
0

Then write | — V1 as a time integral of its derivative, which is —Vv.
For divergence, we also use the fundamental theorem of calculus to

obtain
t t
| div s < c/ V] eses [nllpss 0 + c/ 1120ss | V]| 1505 s
0 0

ot t
+ CHT}HH3+5 / ||VHH2.5+5 as + C/ ||VHH2+«S ds+ C.
0 0



Using the inequality

[ fll#s) < Cllfll12(q) + Cl| curl [ ys—1 ()
+ CJ| div fHHs—1(Q) + C||(V2f) - NHHS*‘»‘”(BQ)

we get
Inllsees < Clinlliz + Cll curlnllsss + Clldivnlliess + CIIST llz(r,y-

The bound on the last terms comes from the tangential estimate.



In order to obtain an estimate for curl v, we use the Cauchy invariance

again and write
(curl V)i = e,-/kajv’" = G/jkajvm(5km - (9k77m) + wé, i=1,2,3

from where, using the algebra property of H'-5+9

3
|| curl VHH1.5+5 < CHVVHHW.SJNS Z ||5km - akanHw.sw + HWQHH1.5+5
k,m=1

t
< C||V||gests / [IVIInesis dS + ||wol|g1s+s.
0
For div v we also use the fundamental theorem of calculus, while the

trace values of v - n (= v3), needed in div-curl, are bounded using the

tangential estimates.
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