A regularity result for the incompressible Euler equation with a free interface

I. Kukavica joint with A. Tuffaha and V. Vicol

Scottsdale, AZ, December 7, 2015

Mini-symposium "Deterministic and Stochastic Aspects of Fluid

Dynamics"

2015 SIAM Conference on Analysis of Partial Differential

Equations

4ロト 4回 ト 4 重 ト 4 重 ト 9 へ (で)

We address the local existence of solutions of the free-surface Euler equations

$$u_t + u \cdot \nabla u + \nabla p = 0 \text{ in } \Omega(t) \times (0, T)$$

 $\operatorname{div} u = 0 \text{ in } \Omega(t) \times (0, T).$

The free boundary $\Gamma_{\rm f} = \Gamma_{\rm f}(t)$ (when the surface is a graph h) evolves according to the velocity field

$$\partial_t h + \mathbf{v}_{hor} \cdot \nabla h = \mathbf{v}_n$$

where n is the space dimension, while the boundary condition for the pressure reads

$$p(x,t) = \epsilon \sigma(x,t)$$
 on $\partial \Gamma_f \times (0,T)$

where σ represents the surface tension.

Two dimensional problem (existence & uniqueness): Nalimov 1974 local existence for analytic data: Shinbrot 1976 local existence irrotational flow finite depths (small data): Yosihara

local existence linearized, stability condition $\nabla p \cdot n \leq 0$: Beale, Hou, and Lowengrub 1993

an example showing the stability condition is necessary: Ebin 1987 local existence for 2D flows for rotational flows - Taylor sign condition must hold: Wu 1997

local existence for 3D flows for rotational flows: Wu 1999 local existence with surface tension and zero surface tension limit: Ambrose and Masmoudi, 2005, 2009

a priori estimates for local existence for rotational flows:

Christodoulou and Lindblad (2000)

1982

Local existence in H^3 with the Taylor condition: Shatah and Zeng 2008, Coutand and Shkoller, 2010

2D local existence in $H^{2.5+\delta}$ with the Taylor condition: K. and Tuffaha 2012

3D local existence in $H^{2.5+\delta}$ for rotational flows, Alazard, Burq, and Zuily (2011)

Global existence results (rotational): Wu (2009, 2011), Germain, Masmoudi, and Shatah (2012), Ionesco and Pusateri (2013)

We may expect $H^{n/2+1+\delta}$ as the optimal space which would permit local existence in space dimensions n=2,3.

True for irrotational (curl u = 0) flows for two and three dimensional cases by a result due to Alazard, Burq, and Zuily (2011)

The proof was done by writing the velocity as a gradient of a potential (using irrotationality) and writing the system for the surface displacement and the restriction of the velocity on the free surface (as in Wu (1997,1999)).

Let $n \in \{2,3\}$ denote the space dimension. We consider the Euler equation on the domain

$$\Omega = \mathbb{R}^{n-1} \times [0,1]$$

with periodic boundary conditions along the x_1, \ldots, x_{n-1} directions with period 1. We assume that the moving boundary is the top

$$\Gamma_1 = \mathbb{R} \times \{x_n = 1\}$$

while the rigid bottom is

$$\Gamma_0 = \mathbb{R} \times \{x_n = 0\}.$$

Denote by $v(x,t) = u(\eta(x,t),t)$ the Lagrangian velocity of the fluid and by $q(x,t) = p(\eta(x,t),t)$ the Lagrangian pressure.

The Euler equation in the Lagrangian formulation reads

$$v_t^i + a_i^k \partial_k q = 0$$
 in $\Omega \times (0, T)$, $i = 1, ..., n$
 $a_i^k \partial_k v^i = 0$ in $\Omega \times (0, T)$

The unknown coefficients a_j^i denote the ij entry of the $n \times n$ matrix

$$a = (\nabla \eta)^{-1}$$

where η stands for the particle map

$$\eta_t(x,t) = v(x,t) \qquad \qquad \eta(x,0) = x, \qquad x \in \Omega.$$

The Lagrangian map in turn determines the evolving domain $\Omega(t) = \eta(\Omega, t)$. The coefficients a satisfy the evolution $a_t = -a : \nabla v : a$ with a(0) = I.

On the top, we assume the no surface tension boundary condition

$$q = 0$$
 on $\Gamma_1 \times (0, T)$

while on the stationary bottom we use

$$v^i N^i = 0$$
 on $\Gamma_0 \times (0, T)$;

where the vector

$$N=(N^1,\ldots,N^n)$$

represents the outward unit normal. In our simplified situation, we have

$$N = (0, ..., 0, -1)$$
 on Γ_0

and

$$N = (0, ..., 0, 1)$$
 on Γ_1 .

Also, denote $H = \{ v \in L^2(\Omega)^n : \partial_i v^i = 0 \text{ in } \Omega, v^i N^i |_{\Gamma_0} = 0 \}.$

The following is the main result.

Theorem (K.-Tuffaha-Vicol 2015) Let n=3, let Ω be as above, and let $\delta \in (0,0.5)$. Assume that $v(\cdot,0)=v_0 \in H^{2.5+\delta}(\Omega) \cap H$ satisfies

$$\operatorname{curl} v_0 \in H^{2+\delta}(\Omega)$$

and that the associated initial pressure $q(\cdot,0)$ satisfies the Rayleigh-Taylor condition

$$\frac{\partial q}{\partial N}(x,0) \le -\frac{1}{C_0} < 0$$

for all $x \in \Gamma_1$.

Then there exists a unique solution (v, q, η) to the system such that

$$\eta \in L^{\infty}([0, T]; H^{3+\delta}(\Omega)) \cap C([0, T]; H^{2.5+\delta}(\Omega))$$
 $v \in L^{\infty}([0, T]; H^{2.5+\delta}(\Omega)) \cap C([0, T]; H^{2+\delta}(\Omega))$
 $v_t \in L^{\infty}([0, T]; H^{2+\delta}(\Omega))$
 $q \in L^{\infty}([0, T]; H^{3+\delta}(\Omega))$
 $q_t \in L^{\infty}([0, T]; H^{2.5+\delta}(\Omega))$

for some time T > 0 depending on the initial data.

For irrotational flows: Alazard, Burq, and Zuily 2011.

2D case: K.-Tuffaha 2014 (all exponents shifted by -0.5).

In the talk, we'll go over the a priori estimates for n = 3.

The a priori estimates can be made rigorous using the horizontal mollification procedure due to Coutand and Shkoller.

The first lemma gives a priori estimates on the coefficient matrix a and the particle map η . All the statements follow from

$$\eta_t = \mathbf{V}$$

and

$$a_t = -a : \nabla v : a$$
.

(Recall:
$$\mathbf{a} = (\nabla \eta)^{-1}$$
.)

Lemma Assume that $\|\nabla v\|_{L^{\infty}([0,T];H^{1.5+\delta}(\Omega))} \leq M$. If

$$T \leq \frac{1}{CM}$$

where C is a sufficiently large constant, depending on ϵ , the following statements hold:

- (i) $\|\nabla \eta(\cdot,t)\|_{H^{1.5+\delta}(\Omega)} \leq C$ for $t \in [0,T]$,
- (ii) $\|a(\cdot,t)\|_{H^{1.5+\delta}(\Omega)} \le C$ (and thus also $\|a(\cdot,t)\|_{L^{\infty}(\Omega)} \le C$) for $t \in [0,T]$,
- (iii) for every $\epsilon \in (0, 1]$ we have

$$\|a-I\|_{H^{1.5+\delta}(\Omega)}^2 \leq \epsilon$$

and

$$\|\mathbf{a}:\mathbf{a}^T-\mathbf{I}\|_{H^{1.5+\delta}(\Omega)}^2\leq \epsilon.$$

Pressure estimates

The following lemma provides elliptic estimates satisfied by the pressure.

Lemma Assume that $\|\nabla v\|_{L^{\infty}([0,T];H^{1.5+\delta}(\Omega))} \leq M$. Then the pressure q satisfies

$$\|q(t)\|_{\mathcal{H}^{3+\delta}} \leq P + P \int_0^t \|q_t(s)\|_{\mathcal{H}^{2+\delta}} ds, \qquad t \in [0,T]$$

where P is a polynomial in $||v||_{H^{2.5+\delta}}$, $||\eta||_{H^{3+\delta}}$, and $||v_0||_{H^{2.5+\delta}}$, and

$$\|q_t(t)\|_{H^{2.5+\delta}} \leq P + P \int_0^t \|q_t(s)\|_{H^{2+\delta}} ds, \qquad t \in [0, T].$$

Applying $a_i^j \partial_j$ to the Euler equation and summing over i,j=1,2,3, we get

$$a_i^j \partial_j (a_i^k \partial_k q) = -a_i^j \partial_j v_t^i = \partial_t a_i^j \partial_j v^i$$

by the divergence condition. We may rewrite this as

$$\partial_{kk}q = \partial_t a_i^j \partial_j v^i + \partial_j ((\delta_{jk} - a_i^j a_i^k) \partial_k q)$$

where we used the Piola identity $\partial_j a_i^j = 0$. This equation is supplemented with the boundary conditions q = 0 on Γ_1 and

$$\partial_i q N^i = (\delta_{ik} - a_i^k) \partial_k q N^i$$
 on $\Gamma_0 \times (0, T)$.

Applying the elliptic regularity to the equation, we get

$$\begin{split} \|q\|_{H^{3+\delta}} & \leq C \|v\|_{H^{2.5+\delta}}^2 + C(1+\|\eta\|_{H^{3+\delta}}^8) \|q\|_{H^{2+\delta}} \\ & \leq C \|v\|_{H^{2.5+\delta}}^2 + C(1+\|\eta\|_{H^{3+\delta}}^8) \int_0^t \|q_t(s)\|_{H^{2+\delta}} \, ds \\ & + C(1+\|\eta\|_{H^{3+\delta}}^8) \|q_t(0)\|_{H^{2+\delta}}. \end{split}$$

The estimate for q_t is obtained from the system

$$\begin{split} \partial_{kk}q_t &= \partial_{tt}a_i^j\partial_jv^i + \partial_ta_i^j\partial_jv_t^i - \partial_j(\partial_ta_j^ja_i^k\partial_kq) - \partial_j(a_j^j\partial_ta_i^k\partial_kq) \\ &+ \partial_j((\delta_{jk} - a_j^ja_i^k)\partial_kq_t) \end{split}$$

with the boundary conditions $q_t = 0$ on Γ_1 and

$$\partial_i q_t N^i = -\partial_t a_i^k \partial_k q N^i + (\delta_{ik} - a_i^k) \partial_k q_t N^i$$
 on Γ_0 (skip).

Tangential estimates

In this section, we derive the tangential estimates on the solution (v, η, a, q) . For short, we denote

$$S = \overline{\partial}^{2.5+\delta}$$

where $\overline{\partial} = (I - \Delta_2)^{1/2}$ with $\Delta_2 = \partial_{11} + \partial_{22}$.

Lemma For $t \in [0, T]$, we have

$$\begin{split} \|Sv(t)\|_{L^{2}}^{2} + \|a_{l}^{3}(t)S\eta^{l}(t)\|_{L^{2}(\Gamma_{1})}^{2} \\ &\leq \int_{0}^{t} P(\|v\|_{H^{2.5+\delta}}, \|v_{t}\|_{H^{2+\delta}}, \|q\|_{H^{3+\delta}}, \|q_{t}\|_{H^{2.5+\delta}}, \|\eta\|_{H^{3+\delta}}) \, ds \\ &+ Q(\|v_{0}\|_{H^{2.5+\delta}}) \end{split}$$

where P and Q are polynomials in indicated arguments,

The proof is obtained by applying the differential operator S to the Euler equation leading to

$$Sv_t^i + S(a_i^k \partial_k q) = 0.$$

We then multiply by Sv^i , integrate, and sum over i = 1, 2, 3 in order to obtain

$$\begin{split} \frac{1}{2} \frac{d}{dt} \|Sv\|_{L^{2}}^{2} &= -\int_{\Omega} S(a_{i}^{k} \partial_{k} q) Sv^{i} \, dx \\ &= -\int_{\Omega} Sa_{i}^{k} \partial_{k} qSv^{i} \, dx - \int_{\Omega} a_{i}^{k} \partial_{k} SqSv^{i} \, dx \\ &- \int_{\Omega} \left(S(a_{i}^{k} \partial_{k} q) - Sa_{i}^{k} \partial_{k} q - a_{i}^{k} \partial_{k} Sq \right) Sv^{i} \, dx = I_{1} + I_{2} + I_{3}. \end{split}$$

Then we estimate the three terms l_1 , l_2 , and l_3 . The Taylor condition appears when treating the first term. The last term is handled by using Kato-Ponce type (double) commutators.

First, we write

$$S = \sum_{m=1}^{2} S_m \partial_m + S_0$$

where $S_m=-(-\Delta_2)^{0.25+\delta/2}\partial_m$ for m=1,2 and $S_0=(I-\Delta_2)^{0.25+\delta/2}.$ Using

$$\partial_m a_i^k = -a_i^k \partial_s \partial_m \eta^I a_i^s, \qquad m = 1, 2$$

which follows by differentiating $a: \nabla \eta = I$, we may rewrite the term $I_1 = -\int_{\Omega} Sa_i^k \partial_k qSv^i dx$ as

$$\begin{split} I_{1} &= -\sum_{m=1}^{2} \int_{\Omega} S_{m} \partial_{m} a_{i}^{k} \partial_{k} q S v^{i} dx - \int_{\Omega} S_{0} a_{i}^{k} \partial_{k} q S v^{i} dx \\ &= -\sum_{m=1}^{2} \int_{\Omega} S_{m} (a_{i}^{k} \partial_{s} \partial_{m} \eta^{i} a_{i}^{s}) \partial_{k} q S v^{i} dx - \int_{\Omega} S_{0} a_{i}^{k} \partial_{k} q S v^{i} dx \end{split}$$

In the leading term $-\sum_{m=1}^{2} \int_{\Omega} a_{l}^{k} S_{m} \partial_{s} \partial_{m} \eta^{l} a_{i}^{s} \partial_{k} q S v^{i} dx$, we integrate by parts in x_{s} . The boundary term uses Taylor (skip the rest).

Divergence-curl estimates for η and v

Finally we need divergence and curl estimates for both, η and v.

For any given matrix function a(x), introduce the variable curl operator B_a acting on the vector function $f = (f^1, f^2, f^3)$ according to

$$B_{a}f = \begin{bmatrix} a_{2}^{k}\partial_{k}f^{3} - a_{3}^{k}\partial_{k}f^{2} \\ a_{3}^{k}\partial_{k}f^{1} - a_{1}^{k}\partial_{k}f^{3} \\ a_{1}^{k}\partial_{k}f^{2} - a_{2}^{k}\partial_{k}f^{1} \end{bmatrix}.$$

Similarly, we introduce the variable divergence operator

$$A_a f = a_i^k \partial_k v^i$$
.

(If a = I, then B_I and A_I agree with the usual curl and divergence operators.)

We start by differentiating in space the Cauchy invariance

$$\epsilon_{ijk}\partial_j \mathbf{v}^m \partial_k \eta^m = \omega_0^i, \qquad t \ge 0, \qquad i = 1, 2, 3$$

obtaining

$$\epsilon_{ijk}\partial_i \mathbf{v}^m \nabla \partial_k \eta^m + \epsilon_{ijk}\partial_k \eta^m \partial_i \nabla \mathbf{v}^m = \nabla \omega_0^i, \qquad t \geq 0, \qquad i = 1, 2, 3.$$

Then we use the fundamental theorem of calculus:

$$\epsilon_{ijk}\partial_k\eta^m\partial_j\nabla\eta^m = \int_0^t \left(\epsilon_{ijk}\partial_k\eta^m\partial_j\nabla\eta_t^m + \epsilon_{ijk}\partial_k\eta_t^m\partial_j\nabla\eta^m\right) ds, \qquad i = 1, 2, 3.$$

The first term inside the integral sign may be rewritten as

$$\begin{split} \epsilon_{ijk}\partial_k\eta^m\partial_j\nabla\eta^m_t &= \epsilon_{ijk}\partial_k\eta^m\partial_j\nabla v^m \\ &= -\epsilon_{ijk}\partial_jv^m\nabla\partial_k\eta^m + \nabla\omega^i_0, \qquad i = 1, 2, 3 \end{split}$$

and we get

$$\epsilon_{ijk}\partial_k\eta^m\partial_j\nabla\eta^m=\int_0^t\Bigl(-\epsilon_{ijk}\partial_j\mathbf{v}^m\partial_k\nabla\eta^m+\epsilon_{ijk}\partial_k\mathbf{v}^m\partial_j\nabla\eta^m\Bigr)\,d\mathbf{s}+t\nabla\omega_0^i,\qquad \mathbf{i}=1$$

i.e.,

$$\epsilon_{ijk}\partial_k\eta^m\partial_j\nabla\eta^m=2\epsilon_{ijk}\int_0^t\partial_kv^m\partial_j\nabla\eta^m\,ds+t\nabla\omega_0^i,\qquad i=1,2,3.$$

Applying the $H^{1+\delta}$ norms of both sides we have

$$\begin{split} \|\nabla \operatorname{curl} \eta\|_{H^{1+\delta}} & \leq C \|\eta\|_{H^{3+\delta}} \|I - \nabla \eta\|_{H^{1.5+\delta}} \\ & + C \int_0^t \|v\|_{H^{2.5+\delta}} \|\eta\|_{H^{3+\delta}} \ ds + C \|\omega_0\|_{H^{2+\delta}}. \end{split}$$

Then write $I - \nabla \eta$ as a time integral of its derivative, which is $-\nabla v$. For divergence, we also use the fundamental theorem of calculus to obtain

$$\|\operatorname{div}\eta\|_{H^{2+\delta}} \leq C \int_0^t \|v\|_{H^{2.5+\delta}} \|\eta\|_{H^{3+\delta}} \, ds + C \int_0^t \|\eta\|_{H^{3+\delta}}^2 \|v\|_{H^{2.5+\delta}} \, ds \ + C \|\eta\|_{H^{3+\delta}} \int_0^t \|v\|_{H^{2.5+\delta}} \, ds + C \int_0^t \|v\|_{H^{2+\delta}} \, ds + C.$$

Using the inequality

$$||f||_{H^{s}(\Omega)} \leq C||f||_{L^{2}(\Omega)} + C||\operatorname{curl} f||_{H^{s-1}(\Omega)}$$

+ $C||\operatorname{div} f||_{H^{s-1}(\Omega)} + C||(\nabla_{2}f) \cdot N||_{H^{s-1.5}(\partial\Omega)}$

we get

$$\|\eta\|_{H^{3+\delta}} \le C \|\eta\|_{L^2} + C \|\operatorname{curl} \eta\|_{H^{2+\delta}} + C \|\operatorname{div} \eta\|_{H^{2+\delta}} + C \|S\eta^3\|_{L^2(\Gamma_1)}.$$

The bound on the last terms comes from the tangential estimate.

In order to obtain an estimate for $\operatorname{curl} v$, we use the Cauchy invariance again and write

$$(\operatorname{curl} \mathbf{v})^i = \epsilon_{ijk} \partial_j \mathbf{v}^m = \epsilon_{ijk} \partial_j \mathbf{v}^m (\delta_{km} - \partial_k \eta^m) + \omega_0^i, \qquad i = 1, 2, 3$$

from where, using the algebra property of $H^{1.5+\delta}$,

$$\begin{aligned} \|\operatorname{curl} v\|_{H^{1.5+\delta}} &\leq C \|\nabla v\|_{H^{1.5+\delta}} \sum_{k,m=1}^{3} \|\delta_{km} - \partial_{k}\eta^{m}\|_{H^{1.5+\delta}} + \|\omega_{0}\|_{H^{1.5+\delta}} \\ &\leq C \|v\|_{H^{2.5+\delta}} \int_{0}^{t} \|v\|_{H^{2.5+\delta}} \, ds + \|\omega_{0}\|_{H^{1.5+\delta}}. \end{aligned}$$

For div v we also use the fundamental theorem of calculus, while the trace values of $v \cdot n = v_3$, needed in div-curl, are bounded using the tangential estimates.