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Modules, groups, or communities




Network hierarchy

(Clauset, Moore, and Newman 2006, 2008)
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Let:
0; = probability of an edge
L; = number of vertices in left subtree
R; = number of vertices in right subtree

E; = actual number of edges in between two subtrees




Likelihood of a network given a dendrogram
and a set of probabilities is:
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The maximum with respect to 0 gives
simply 0, = E; /(L; R;). The maximum with
respect to the dendrogram structure is

harder: we use Markov chain Monte Carlo
to sample the configuration space.



* Use standard methods borrowed from phylogenetic
reconstruction:
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* Repeat as necessary:

- Exchange subtrees
— Calculate ratio of likelihoods

- Accept/reject using the usual Metropolis-Hastings
probability

* Reduce “temperature” to find max-likelihood tree



 But the real interest in the method is when we don't
just look at the maximum likelihood tree

- Many trees are competitive with the maximum
likelihood tree

- Real structure is captured not by one tree, but by
the distribution over possible trees

- The Monte Carlo method automatically generates
this distribution and with this we can do many
things. . .



 (Generate consensus hierarchies:







* Perform network “generalization”, i.e., generate new
networks from the model that are not the same as the
original but are statistically similar
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* Learn which edges are probable and which are
improbable, which are “surprising”



Link prediction

Find vertex pairs that have high probability of
connection, but that are not actually connected:
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Terrorist association network
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Vertex classification
(Newman and Leicht 2007)

* We specity a very broad set of possible structures that
we are interested in:




Definition of the model

* There are three kinds of quantities in this approach:

- Observed data: the pattern of edges observed
between the vertices. These are given to us by the
experimenter.

- Missing data: We assume that the vertices divide
into ¢ groups. We denote the group to which vertex
1 belongs by ¢;. These are missing data.

- Model parameters: these describe the patterns of
connection between vertices in different groups.



Definition of the model

Directed case:

71, = probability of being in group r
and

0,; = probability of a link to vertex 1

These satisty
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Likelihood and log-likelihood

e The likelihood is
Pr(A,gl|r,0) = Pr(Alg, ,0) Pr(gl|m,6)

e Here
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* Unfortunately, we don't know the values of the
missing data, so we can't evaluate this expression

* However, we can make a pretty good guess at the
values of the missing data if we know A, &, and 6.
More specifically, we can calculate the probability that
g; takes a particular value r thus:
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* The numerator we can calculate by summing Pr(A,g |
i ) over all the gs except g;

qir = Pr(gi =r|A, ,0) =

* The denominator is fixed by the normalization



e The result is:
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« This looks odd: we're saying you can calculate g;,

given the model and the data, and then we're going to
calculate the model from g;, and the data?

* Yes, but we have to do it self-consistently. . .



0

Expected likelihood

* We can now make a guess about the value of the log-
likelihood. Our best guess is just the expectation
value:

— Z Z Pr(g|A, t,0) Z{lnmr +ZAI]1119 }
]

c-l =1 0, =1

&N

— ZPI‘(S’I — ?"‘A, 7T,9) {11’1 7Ty + ZAU 11'19?7}
ir ]

Y qir|In 7t + ) Ay In6y .
” ]



* Now it's a straightforward matter to maximize this
with respect to ™ and 6 to find the best values. The
result is:
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* S0 we have w and 0 in terms of 4 and we have g in
terms of T and 0

* To find a self-consistent solution to both sets of
equations, we iterate from a suitable set of starting
values



Expectation-Maximization Algorithm

* Has a number of clear advantages:

- Very simple: just a few lines of computer code to
implement the method

- Fast: typically only a few seconds to analyze even a
large network

- Simultaneously tells us how to group the vertices in
the network and what the appropriate definition is
for the groups

* Derivation is more complicated for undirected case,
but the final equations are exactly the same



Example: Social network
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EM algorithm

Ordinary community
detection
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