A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning

Alireza Bagheri Garakani¹

Joint work with Aurélien Bellet², Yingyu Liang³, Maria-Florina Balcan⁴ and Fei Sha¹

¹University of Southern California ²Télécom ParisTech ³Princeton University ⁴Carnegie Mellon University

SIAM International Conference on Data Mining

May 1, 2015

Introduction

Distributed learning

- General setting
 - Data arbitrarily distributed across different nodes
 - Examples: sensor networks, mobile devices, storage purposes
- Research questions
 - Practice: derive scalable algorithms, with small communication and synchronization overhead
 - Theory: study tradeoff between communication complexity and learning/optimization error

Introduction

Problem of interest

Problem of interest

Learn sparse combinations of n distributed "atoms":

$$\min_{\alpha \in \mathbb{R}^n} f(\alpha) = g(\mathbf{A}\alpha)$$
 s.t. $\|\alpha\|_1 \leq \beta$ $(\mathbf{A} \in \mathbb{R}^{d \times n})$

Note: domain can be unit simplex Δ_n instead of ℓ_1 ball

- ▶ Atoms are distributed across a set of N nodes $V = \{v_i\}_{i=1}^N$
- Nodes communicate across a network (connected graph)
- Many applications, including
 - LASSO with distributed features
 - Kernel SVM with distributed training instances
 - Boosting with distributed learners

Introduction

Contributions

- Main ideas
 - Adapt the Frank-Wolfe (FW) algorithm to distributed setting
 - ► Turn FW sparsity guarantees into communication guarantees
- Summary of results
 - Worst-case optimal communication complexity
 - Balance local computation through approximation
 - Good practical performance on synthetic and real data

Outline

- 1. Frank-Wolfe in the centralized setting
- 2. Proposed distributed FW algorithm
- 3. Approximate variant
- 4. Communication complexity analysis
- 5. Experiments

Frank-Wolfe in the centralized setting

Algorithm and convergence

Convex minimization over a compact domain ${\mathcal D}$

$$\min_{\alpha \in \mathcal{D}} f(\alpha)$$

 $ightharpoonup \mathcal{D}$ convex, f convex and continuously differentiable

Let
$$\boldsymbol{\alpha}^{(0)} \in \mathcal{D}$$
 for $k=0,1,\ldots$ do $\boldsymbol{s}^{(k)} = \arg\min_{\boldsymbol{s} \in \mathcal{D}} \left\langle \boldsymbol{s}, \nabla f(\boldsymbol{\alpha}^{(k)}) \right\rangle$ $\boldsymbol{\alpha}^{(k+1)} = (1-\gamma)\boldsymbol{\alpha}^{(k)} + \gamma \boldsymbol{s}^{(k)}$ end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After $O(1/\epsilon)$ iterations, FW returns α s.t. $f(\alpha) - f(\alpha^*) \le \epsilon$.

(figure adapted from [Jaggi, 2013])

Frank-Wolfe in the centralized setting

Use-case: sparsity constraint

- lacktriangle Solution to linear minimization step lies at a vertex of ${\cal D}$
- ▶ When \mathcal{D} is the ℓ_1 -norm ball, vertices are signed unit basis vectors $\{\pm \boldsymbol{e}_i\}_{i=1}^n$:
 - FW is greedy: $\alpha^{(0)} = \mathbf{0} \Longrightarrow \|\alpha^{(k)}\|_0 \le k$
 - ► FW is efficient: simply find max absolute entry of gradient
- ► FW finds an ϵ -approximation with $O(1/\epsilon)$ nonzero entries, which is worst-case optimal [Jaggi, 2013]
- Similar derivation for simplex constraint [Clarkson, 2010]

Sketch of the algorithm

Recall our problem

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} f(\boldsymbol{\alpha}) = g(\boldsymbol{A}\boldsymbol{\alpha}) \quad \text{s.t.} \quad \|\boldsymbol{\alpha}\|_1 \leq \beta \qquad (\boldsymbol{A} \in \mathbb{R}^{d \times n})$$

Algorithm steps per iteration

4. All nodes update current solution α , and loop

Convergence

- Tradeoff between communication and optimization error
- ► Let B be the cost of broadcasting a real number

Theorem 1 (Convergence of exact dFW)

After $O(1/\epsilon)$ rounds and $O((Bd + NB)/\epsilon)$ total communication, each node holds an ϵ -approximate solution.

No dependence on total number of combining elements

Approximate variant

- Exact dFW is scalable but requires synchronization
 - ▶ Unbalanced local computation → significant wait time
- Strategy to balance local costs:
 - Node v_i clusters its n_i atoms into m_i groups
 - ▶ We use the greedy *m*-center algorithm [Gonzalez, 1985]
 - Run dFW on resulting centers
- Use-case examples:
 - Balance number of atoms across nodes
 - Set m_i proportional to computational resources of v_i

Approximate variant

- Define
 - $r^{opt}(A, m)$ to be the optimal ℓ_1 -radius of partitioning atoms in A into m clusters, and $r^{opt}(m) := \max_i r^{opt}(A_i, m_i)$
 - $G := \max_{\alpha} \|\nabla g(\mathbf{A}\alpha)\|_{\infty}$

Theorem 2 (Convergence of approximate dFW)

After $O(1/\epsilon)$ iterations, the algorithm returns a solution with optimality gap at most $\epsilon + O(Gr^{opt}(\mathbf{m}^0))$. Furthermore, if $r^{opt}(\mathbf{m}^{(k)}) = O(1/Gk)$, then the gap is at most ϵ .

- Additive error depends on cluster tightness
- Can gradually add more centers to make error vanish

Communication complexity analysis

Cost of dFW under various network topologies

- ▶ Star graph and rooted tree: $O(Nd/\epsilon)$ communication (use network structure to reduce cost)
- ▶ General connected graph: $O(M(N+d)/\epsilon)$, where M is the number of edges (use a message-passing strategy)

Communication complexity analysis

Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is $\Omega(d/\epsilon)$.

▶ Shows that dFW is worst-case optimal in ϵ and d

- Objective value achieved for given communication budget
 - Compared to distributed ADMM method [Boyd et al., 2011], dFW is advantageous when data and/or solution is sparse
 - Compared to Local FW method [Lodi et al., 2010],
 dFW consistently outperforms due to better selection strategy
- Runtime of dFW in large-scale distributed setting
 - Benefits of approximate variant
 - Asynchronous updates

- Infrastructure
 - ▶ Fully connected with $N \in \{1, 5, 10, 25, 50\}$ nodes
 - ► A node is a single 2.4GHz CPU core of a separate host
 - Communication over 56.6-gigabit network
- Task
 - SVM with Gaussian RBF kernel
 - Speech data with 8.7M training examples, 41 classes
 - Implementation of dFW in C++ with openMPI¹

¹http://www.open-mpi.org

- When distribution of atoms is roughly balanced, dFW achieves near-linear speedup
- When distribution is unbalanced (e.g., 1 node has 50% of the data), great benefits from approximate variant

(a) dFW on uniform distribution

(b) Approximate dFW to balance costs

- Another way to reduce synchronization costs is to perform asynchronous updates
- ► To simulate this, we randomly drop communication messages with probability *p*
- ▶ dFW is fairly robust, even with 40% random drops

dFW under communication errors and asynchrony

Summary and perspectives

- The proposed distributed algorithm
 - is applicable to a family of sparse learning problems
 - has theoretical guarantees and good practical performance
 - appears robust to asynchronous updates and communication errors
- See paper for details, proofs and additional experiments
- Future directions
 - Propose an asynchronous version of dFW
 - A theoretical study in this challenging setting

- Another way to reduce synchronization costs is to perform asynchronous updates
- ► To simulate this, we randomly drop communication messages with probability *p*
- ▶ dFW is fairly robust, even with 40% random drops

dFW under communication errors and asynchrony

- Objective value achieved for given communication budget
 - Compared to distributed ADMM method [Boyd et al., 2011], dFW is advantageous when data and/or solution is sparse
 - Compared to Local FW method [Lodi et al., 2010],
 dFW consistently outperforms due to better selection strategy
- Runtime of dFW in large-scale distributed setting
 - Benefits of approximate variant
 - Asynchronous updates

Communication complexity analysis

Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of any deterministic algorithm is $\Omega(d/\epsilon)$.

▶ Shows that dFW is worst-case optimal in ϵ and d

Approximate variant

- Define
 - $r^{opt}(A, m)$ to be the optimal ℓ_1 -radius of partitioning atoms in A into m clusters, and $r^{opt}(m) := \max_i r^{opt}(A_i, m_i)$
 - $G := \max_{\alpha} \|\nabla g(\mathbf{A}\alpha)\|_{\infty}$

Theorem 2 (Convergence of approximate dFW)

After $O(1/\epsilon)$ iterations, the algorithm returns a solution with optimality gap at most $\epsilon + O(Gr^{opt}(\mathbf{m}^0))$. Furthermore, if $r^{opt}(\mathbf{m}^{(k)}) = O(1/Gk)$, then the gap is at most ϵ .

- Additive error depends on cluster tightness
- Can gradually add more centers to make error vanish

Approximate variant

- Exact dFW is scalable but requires synchronization
 - ▶ Unbalanced local computation → significant wait time
- Strategy to balance local costs:
 - Node v_i clusters its n_i atoms into m_i groups
 - ▶ We use the greedy *m*-center algorithm [Gonzalez, 1985]
 - Run dFW on resulting centers
- Use-case examples:
 - Balance number of atoms across nodes
 - Set m_i proportional to computational resources of v_i

Convergence

- Tradeoff between communication and optimization error
- ► Let B be the cost of broadcasting a real number

Theorem 1 (Convergence of exact dFW)

After $O(1/\epsilon)$ rounds and $O((Bd + NB)/\epsilon)$ total communication, each node holds an ϵ -approximate solution.

No dependence on total number of combining elements