A Distributed Frank-Wolfe Algorithm for

Communication-Efficient Sparse Learning

Alireza Bagheri Garakani'
Joint work with Aurélien Bellet?, Yingyu Liang?,
Maria-Florina Balcan* and Fei Shat

LUniversity of Southern California

2Télécom ParisTech
3Princeton University

4Carnegie Mellon University

SIAM International Conference on Data Mining

May 1, 2015

Introduction
Distributed learning

» General setting

» Data arbitrarily distributed across different nodes
» Examples: sensor networks, mobile devices, storage purposes

» Research questions

» Practice: derive scalable algorithms, with small communication
and synchronization overhead

» Theory: study tradeoff between communication complexity and
learning /optimization error

Introduction

Problem of interest

Problem of interest

Learn sparse combinations of n distributed “atoms”:

min f(a) =g(Aa) st a1 <5 (A c RO*™

Note: domain can be unit simplex A, instead of ¢; ball

N

» Atoms are distributed across a set of N nodes V = {v;}:_,

» Nodes communicate across a network (connected graph)

» Many applications, including
» LASSO with distributed features

» Kernel SVM with distributed training instances
» Boosting with distributed learners

Introduction

Contributions

» Main ideas

» Adapt the Frank-Wolfe (FW) algorithm to distributed setting
» Turn FW sparsity guarantees into communication guarantees

» Summary of results

» Worst-case optimal communication complexity
» Balance local computation through approximation
» Good practical performance on synthetic and real data

Outline

1. Frank-Wolfe in the centralized setting
2. Proposed distributed FW algorithm

3. Approximate variant

4. Communication complexity analysis

5. Experiments

Frank-Wolfe in the centralized setting

Algorithm and convergence
Convex minimization over a compact domain D

-

» D convex, f convex and continuously differentiable

Let al® €D

for k=0.1.... do
s(k) = arg minp (s, VF(al¥))
olk+1) — {1 = 7,)a(k) 1+ ~glk)

end for

S D

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After O(1/¢) iterations, FW returns ac s.t. f(ax) — f(a®) <e.
(figure adapted from [Jaggi, 2013]

Frank-Wolfe in the centralized setting

Use-case: sparsity constraint

» Solution to linear minimization step lies at a vertex of D

» When D is the /1-norm ball, vertices are
vectors {1e;}" ;:

» FW is greedy: al® =0 = ||a®||p <

signed unit basis

k

» FW is efficient: simply find max absolute entry of gradient

» FW finds an e-approximation with O(1/€) nonzero entries,

which is worst-case optimal [Jaggi, 2013]

» Similar derivation for simplex constraint

Clarkson, 2010]

Distributed Frank-Wolfe (dFW)

Sketch of the algorithm

Recall our problem

min f(a)=g(Aa) st. |al; <3 (AecR"

ack”

Algorithm steps per iteration

4. All nodes update current solution «v, and loop

Distributed Frank-Wolfe (dFW)

Convergence

» Tradeoff between communication and optimization error

» Let B be the cost of broadcasting a real number

Theorem 1 (Convergence of exact dFW)
After O(1/€) rounds and O ((Bd + NB)/¢€) total communication,

each node holds an e-approximate solution.

» No dependence on total number of combining elements

Distributed Frank-Wolfe (dFW)

Approximate variant

» Exact dFW is scalable but requires synchronization
» Unbalanced local computation — significant wait time

» Strategy to balance local costs:

» Node v; clusters its n; atoms into m; groups
» We use the greedy m-center algorithm [Gonzalez, 1985]

» Run dFW on resulting centers

» Use-case examples:

» Balance number of atoms across nodes
» Set m; proportional to computational resources of v;

greedy L1
clustering on v;

—

n 30+ H

V; V> V3V, Vs Vg

w30 o H#

A

V; V5 V3 Vg Vs Vg

Distributed Frank-Wolfe (dFW)

Approximate variant

» Define

» roP(A. m) to be the optimal /;-radius of partitioning atoms in
A into m clusters, and r°P*(m) := max; reP*(A;, m;)
» G :=maxq ||Veg(Aax)|

Theorem 2 (Convergence of approximate dFW)

After O(1/¢€) iterations, the algorithm returns a solution with
optimality gap at most € + O(Gr°P*(mP)). Furthermore, if
roPt(m'%)) = O(1/Gk), then the gap is at most €.

» Additive error depends on cluster tightness

» Can gradually add more centers to make error vanish

Communication complexity analysis

Cost of dFW under various network topologies

/\ /n\
v3—‘—vl Vv, V3 Vy — vV,
B\ \/ \/

General connected

Star graph Rooted tree graph

» Star graph and rooted tree: O(Nd/€) communication (use
network structure to reduce cost)

» General connected graph: O(M(N + d)/€), where M is the

number of edges (use a message-passing strategy)

Communication complexity analysis

Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Q(d/¢).

» Shows that dFW is worst-case optimal in € and d

Experiments

» Objective value achieved for given communication budget

» Compared to distributed ADMM method [Boyd et al., 2011],
dFW is advantageous when data and/or solution is sparse

» Compared to Local FW method [Lodi et al., 2010],
dFW consistently outperforms due to better selection strategy

» Runtime of dFW in large-scale distributed setting

» Benefits of approximate variant
» Asynchronous updates

Experiments

Large-scale distributed setting

» Infrastructure

» Fully connected with N € {1,5,10,25.50} nodes
» A node is a single 2.4GHz CPU core of a separate host
» Communication over 56.6-gigabit network

» Task

» SVM with Gaussian RBF kernel

» Speech data with 8.7M training examples, 41 classes
» Implementation of dFW in C++ with openMPI!

'http://www.open-mpi.org

Experiments

Large-scale distributed setting

» When distribution of atoms is roughly balanced, dFW achieves
near-linear speedup

» When distribution is unbalanced (e.g., 1 node has 50% of the
data), great benefits from approximate variant

1 X 10° ' ' % 10° , i} '
= F W, N=1 — dFW, N=10, uniform
w—dF W, N=5 = dFW, N=10, unbalanced
0.8} —g:zw mjg 0.8F == Approx dFW, N=10
Los ——dFW. N=50| Los
O O
L QL
S o4 S04t
0.2 0.2+
0 : - ‘ 0 : l - —
0 500 1000 1500 2000 0 500 1000 1500 2000 2500

Runtime (seconds) Runtime (seconds)

(a) dFW on uniform distribution (b) Approximate dFW to balance costs

Experiments

Large-scale distributed setting

» Another way to reduce synchronization costs is to perform
asynchronous updates

» To simulate this, we randomly drop communication messages
with probability p

» dFW is fairly robust, even with 40% random drops

0.02

—dFW, N=10, p=0

e FW, N=10, p=0.1
—dFW, N=10, p=0.2| |
—dFW, N=10, p=0.4

0 100 200 300 400
lteration number

dFW under communication errors and asynchrony

Summary and perspectives

» T he proposed distributed algorithm

» is applicable to a family of sparse learning problems
» has theoretical guarantees and good practical performance
» appears robust to asynchronous updates and communication

errors

» See paper for details, proofs and additional experiments

» Future directions

» Propose an asynchronous version of dFW
» A theoretical study in this challenging setting

Experiments
Large-scale distributed setting

» Another way to reduce synchronization costs is to perform
asynchronous updates

» To simulate this, we randomly drop communication messages
with probability p

» dFW is fairly robust, even with 40% random drops

0.02

—dFW, N=10, p=0

e JFW, N=10, p=0.1
—dFW, N=10, p=0.2| |
—dFW, N=10, p=0.4

0 100 200 300 400
lteration number

dFW under communication errors and asynchrony

Experiments

» Objective value achieved for given communication budget

» Compared to distributed ADMM method [Boyd et al., 2011],
dFW is advantageous when data and/or solution is sparse

» Compared to Local FW method [Lodi et al., 2010],
dFW consistently outperforms due to better selection strategy

» Runtime of dFW in large-scale distributed setting

» Benefits of approximate variant
» Asynchronous updates

Communication complexity analysis

Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Q(d /).

» Shows that dFW is worst-case optimal in € and d

Distributed Frank-Wolfe (dFW)

Approximate variant

» Define

» r°P(A. m) to be the optimal /;-radius of partitioning atoms in
A into m clusters, and r°P*(m) := max; r°P*(A;. m;)
» G :=maxq |Vg(Aa)| =

Theorem 2 (Convergence of approximate dFW)

After O(1/¢€) iterations, the algorithm returns a solution with
optimality gap at most € + O(Gr°Pt*(mP)). Furthermore, if
roPt(m'%)) = O(1/Gk), then the gap is at most e.

» Additive error depends on cluster tightness

» Can gradually add more centers to make error vanish

Distributed Frank-Wolfe (dFW)

Approximate variant

» Exact dFW is scalable but requires synchronization
» Unbalanced local computation — significant wait time

» Strategy to balance local costs:

» Node v; clusters its n; atoms into m; groups
» We use the greedy m-center algorithm [Gonzalez, 1985]

» Run dFW on resulting centers

» Use-case examples:

» Balance number of atoms across nodes
» Set m; proportional to computational resources of v;

greedy L1
clustering on v,

E—

n 30+ 3

V; V5 V3 V4 Vs Vg

w30 o

A

Vy V5 V3 Vg Vs Vg

Distributed Frank-Wolfe (dFW)

Convergence

» Tradeoff between communication and optimization error

» Let B be the cost of broadcasting a real number

Theorem 1 (Convergence of exact dFW)

After O(1/€) rounds and O ((Bd + NB)/¢€) total communication,
each node holds an e-approximate solution.

» No dependence on total number of combining elements

