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LDDMM
	 The	“large	deforma.on	diffeomorphic	metric	mapping”	method	is	a	family	of	
algorithms	designed	for	shape	registra.on.	

	 They	provide	a	(local)	representa.on	of	shape	space	in	the	diffeomorphism	
group.	

	 They	are	rou.nely	used	in	Computa.onal	Anatomy	to	study	organ	shape	
varia.on	in	rela.on	to	disease	using	medical	images.	

	 Nota.on	and	assump.ons	follow	recent	papers	from	S.	Arguillère	et	al.,	and	S.	
Arguillère’s	disserta.on.	



Basic Principles of LDDMM
	 Denote	by	 Diff↓0↑𝑝 the	space	of	diffeomorphisms	𝜙	in	 𝑅↑𝑑 	who		

◦  are	 𝐶↑𝑝 	
◦  Are	such	that	𝜙−id and	its	deriva.ves	of	order	p	or	less	tend	to	0	at	infinity	

◦  Diff↓0↑𝑝 −id	is	an	open	subset	of	(C↓0↑p (ℝ↑𝑑 , ℝ↑𝑑 ), ‖‖↓𝑝, ∞ ) 		

	 Let	V	be	a	Hilbert	space	con.nuously	included	in	 (C↓0↑p (ℝ↑𝑑 , ℝ↑𝑑 ), ‖‖↓𝑝, 
∞ )	for	some	𝑝≥1.	
	 Consider	on	 Diff↓0↑𝑝 	the	distribu.on	
𝜙↦ 𝑉↓𝜙 =𝑉∘𝜙={𝑣∘𝜙, 𝑣∈𝑉}	
		with	sub-Riemannian	metric	‖𝑣∘𝜙‖↓𝜙 = ‖𝑣‖↓𝑉 .	



Associated diffeomorphism subgroup
	 Denote	by	 Diff↓𝑉 	the	group	of	aNainable	diffeomorphisms	through	finite	
energy	paths	𝜙(⋅)	such	that	𝜙 (𝑡)∈ 𝑉↓𝜙(𝑡)  and		
∫0↑1▒‖𝜙 ‖↓𝜙  ↓ 𝑑𝑡<∞	



Basic example
	 Let	𝐾:ℝ↑𝑑 × ℝ↑𝑑 →M↓𝑑 ( ℝ↑𝑑 )	be	a	posi.ve	kernel:	𝐾(𝑥,𝑦)=𝐾(𝑦,𝑥)↑𝑇 	and	
∑𝑖,𝑗=1↑𝑛▒𝑎↓𝑖↑𝑇 𝐾(𝑥↓𝑖 , 𝑥↓𝑗 )𝑎↓𝑗 ≥0 	
	
for	all	 𝑥↓1 ,…, 𝑥↓𝑛 , 𝑎↓1 ,…, 𝑎↓𝑛 ∈ ℝ↑𝑑 	(with	equality	only	if	𝑎↓1 =…=𝑎↓𝑛 =0.)	
	 Take	V	as	the	associated	RKHS	
	 Let	 𝑉↓𝜙 =𝑉∘𝜙.	



Choosing 𝑉 and its norm
	 Equivalent	to	choosing	the	posi.ve	kernel.	
	 Gaussian	kernel	
𝐾(𝑥,𝑦)= 𝑒↑− |𝑥−𝑦|↑2 /2𝑎↑2   Id	
	 Laplacian,	or	Abel	kernels:	
	𝐾(𝑥,𝑦)= 𝑃↓𝑐 (|𝑥−𝑦|/𝑎 )𝑒↑− |𝑥−𝑦|↑ /2𝑎  Id	
where	𝑃↓𝑐 	is	a	reverse	Bessel	polynomial	of	degree	c.	
Equivalent	to	Sobolev	 𝐻↑𝑑+1/2 +𝑐 	in	odd	dimension.	





LDDMM Op0mal Control Problem (version 1)
	 Minimize		
∫0↑1▒‖𝑣(𝑡)‖↓𝑉↑2 𝑑𝑡 +𝑈(𝜙(1))	
subject	to	𝜙(0)=id	and	 𝜙 =𝑣∘𝜙.	



LDDMM Op0mal Control Problem (version 2)
	 Assume	that	Diff↓0↑𝑝 acts	on	a	“shape	space”	𝔐.	.	

	 Minimize		
∫0↑1▒‖𝑣(𝑡)‖↓𝑉↑2 𝑑𝑡  +𝐷(𝑞(1), 𝑞↓1 )	
subject	to	q(0)= 𝑞↓0 	and	 𝑞 =𝑣⋅𝑞	(infinitesimal	ac.on).		(infinitesimal	ac.on).	



Interpreta0on
	 LDDMM	deforms	the	whole	space	in	order	to	move	the	template	to	a	posi.on	
close	to	the	target	(up	to	invariance).	

	 The	deforma.on	cost	treats	ℝ↑𝑑 	as	a	homogeneous	material	or	fluid.	

	 In	par.cular,	this	cost	does	not	depend	on	the	deformed	objects.	



This is good because… 
	 The	shape	space	geometry	derives	form	a	right-invariance	Riemannian	metric	
on	Diff	through	a	Riemannian	submersion.	

	 Geodesic	equa.ons	are	well	known	(EPDiff)	and	have	important	conserva.on	
laws.	

	 Numerical	procedures	are	well	explored.	

	 Dependency	on	shape	can	be	brought	in	through	the	data	aNachment	term.	



However…
	 Including	object	informa.on	to	drive	the	deforma.on	process	can	be	beneficial	
in	some	important	cases	such	as	
◦  Shape	complexes	(mul.-shapes)	
◦  Ar.culated	shapes	
◦  Near	topological	changes	









(Sub) Riemannian 
Submersion



Nota0on and SeRng
	 Goal:	“project”	a	sub-Riemannian	structure	on	diffeomorphisms	onto	a	shape	
space	

	 Let	𝑉	be	a		Hilbert	space	con.nuously	embedded	in	𝐶↓0↑𝑝 ( ℝ↑𝑑 , ℝ↑𝑑 )	for		be	a		Hilbert	space	con.nuously	embedded	in	𝐶↓0↑𝑝 ( ℝ↑𝑑 , ℝ↑𝑑 )	for	
𝑝≥1.	
	 Associate	to	each	𝜙∈ Diff↓0↑𝑝 	a	Hilbert	norm	on	𝑉	denoted	‖‖↓𝑉, 𝜙 such	that			denoted	‖‖↓𝑉, 𝜙 such	that		
‖𝑣‖↓𝑉, 𝜙 ≥ 𝑐↓𝜙 ‖𝑣‖↓𝑉 	
for	some	 𝑐↓𝜙 .	
	 Denote	 𝑉↓𝜙 ={𝑣∘𝜙, 𝑣∈𝑉},	 ‖𝑣∘𝜙‖↓𝜙 = ‖𝑣‖↓𝑉, 𝜙 .	



Nota0on and SeRng (cont.)
	 Diff↓0 :	group	of	aNainable	diffeomorphisms,	endpoints	of	paths	𝜙(⋅)	such	that	
∫0↑1▒‖𝜙 (𝑡)‖↓𝜙(𝑡)↑2 𝑑𝑡 <∞.	
	 𝔐:	shape	space	with	Diff↓0 	ac.ng	on	𝔐.	:	shape	space	with	Diff↓0 	ac.ng	on	𝔐.	.	
(𝜙,𝑞)↦𝜙⋅𝑞= 𝜋↓𝑞 (𝜙)	
(𝑣,𝑞)↦𝑣⋅𝑞= 𝜉↓𝑞 𝑣=𝑑𝜋↓𝑞 (id)𝑣		
(ac.on	and	infinitesimal	ac.on).	

	 Assume	that	𝔐	is	open	in	𝒬,	a	Banach	space.		is	open	in	𝒬,	a	Banach	space.	,	a	Banach	space.	



Isometry Hypothesis 
	 Fix	𝑞↓0 ∈𝔐:	the	template.	

	 Let 𝔐↓0 ={𝜋↓𝑞↓0  (𝜙), 𝜙∈ Diff↓0 }.	

	 For 𝜙∈ Diff↓0 ,	define	𝐻↓𝜙 = Null(𝜉↓𝑞 )↑⊥↓𝑉, 𝜙  ⊂𝑉,		with	𝑞= 𝜋↓𝑞↓0  (𝜙).	,		with	𝑞= 𝜋↓𝑞↓0  (𝜙).	
	
𝑣∈ 𝐻↓𝜙 ⇔(𝜉↓𝑞 𝑤=0⇒⟨𝑣,𝑤⟩↓𝑉,𝜙 =0)	



Isometry Hypothesis (cont.)
	 If	 𝜋↓𝑞↓0  (𝜙)= 𝜋↓𝑞↓0  (𝜓)=𝑞,	the	condi.on	
𝜉↓𝑞 (𝐼(𝑣))= 𝜉↓𝑞 𝑣	
uniquely	defines	an	isomorphism	𝐼:𝐻↓𝜙 →𝐻↓𝜓 .	
(𝐼(𝑣)	is	the	orthogonal	projec.on	of	0	on	the	space	{𝑤:𝜉↓𝑞 𝑤= 𝜉↓𝑞 𝑣}	for	the	
⟨ , ⟩↓𝑉,𝜙 	dot	product).	
	 Assump.on:	𝐼	is	an	isometry	between	𝐻↓𝜙 and	 𝐻↓𝜓 .	



Shape space distribu0on and metric
	 Define	 ℋ↓𝑞 =𝜉↓𝑞 𝐻↓𝜙 ={𝜉↓𝑞 𝑣, 𝑣∈ 𝐻↓𝜙 }	for	 𝜋↓𝑞↓0  (𝜙)=𝑞.	
	 On	this	set,	let	
‖𝜉↓𝑞 𝑣‖↓𝑞 = ‖𝑣‖↓𝑉,𝜙 : 𝑣∈ 𝐻↓𝜙 	
	 Independent	of	𝜙∈ 𝜋↓𝑞↓0 ↑−1 (𝑞)	by	assump.on.	

	 This	provides	a	sub-Riemannian	metric	on	𝔐.	.	

















Special case: LDDMM
	 Take	 ‖𝑣‖↓𝑉,𝜙 = ‖𝑣‖↓𝑉 	so	that	𝐻↓𝜙 = 𝐻↓𝜓 	and	𝐼=id.	
	 ‖𝜉↓𝑞 𝑣‖↓𝑉 = ‖𝑣‖↓𝑉 	for	𝑣∈ 𝐻↓𝜙 ,	𝜙⋅ 𝑞↓0 =𝑞.	.	



Slightly less trivial…
	 Assume	that	‖⋅‖↓𝑉,𝜙 = ‖⋅‖↓𝑉,𝜓  when	𝜙⋅ 𝑞↓0 =𝜓⋅ 𝑞↓0 .	
	 Then	again	𝐻↓𝜙 = 𝐻↓𝜓 	and	𝐼=id.	
	 All	examples	today	fall	in	this	category.	



Running Construc0on
	 Let	(𝑞,ℎ)↦ 𝐺↓𝑞 (ℎ,ℎ)	be	a	pseudo-Riemannian	metric	on	𝔐.	

	 Let		
‖𝑣‖↓𝑞↑2 = ‖𝑣‖↓𝑣,𝜙↑2 =𝜆‖𝑣‖↓𝑉↑2 + 𝐺↓𝑞 (𝜉↓𝑞 𝑣, 𝜉↓𝑞 𝑣)	
with	𝑞= 𝜋↓𝑞↓0  (𝜙).	



Hybrid LDDMM problem
	 Minimize		
∫0↑1▒‖𝑣(𝑡)‖↓𝑉↑2 𝑑𝑡  +𝐷(𝑞(1), 𝑞↓1 )	
	
subject	to	q(0)= 𝑞↓0 	and	 𝑞 = 𝜉↓𝑞 𝑣.	.	



Two interpreta0ons
1.  Enrich	the	LDDMM	norm	with	shape-dependent	(geometric)	informa.on.	

2.  Modify	the	shape	space	pseudo	norm	for	force	geodesics	to	evolve	
diffeomorphically.		



Important note
	 It	is	easy	to	apply	the	construc.on	to	products	of	shape	spaces.	
	 Replace	𝔐	by	 𝔐↑𝑛 	with	the	product	pseudo-Riemannian	metric.	

	 Use	ac.on	𝜙⋅(𝑞↓1 ,…, 𝑞↓𝑛 )=(𝜙⋅ 𝑞↓1 ,…,𝜙⋅ 𝑞↓𝑛 ).	



Applica0on to spaces of curves
	 A	lot	of	pseudo-Riemannian	metrics	have	been	described	and	studied	in	the	
literature,	notably	by	Peter	Michor’s	group	in	Vienna,	or	by	Srivastava,	Klassen,	
Mumford,	Shah,	etc.	

	 One	works	with	parametrized	curves,	or	embeddings.	

	 The	shape	spaces	of	interest	are	curves	modulo	parametriza.on.	Invariance	is	
achieved	by	selec.ng	a	parametriza.on-invariant	cost	func.on.		





Maximum Principle: Assump0ons
	 𝔐={𝐶↑𝑟 embeddings from 𝑆↑1  (or [0,1]) to ℝ↑2 },	𝒬= 𝐶↑𝑟 (𝑆↑1 , ℝ↑2 ).	
	 𝑉⊂ 𝐶↓0↑𝑝 (ℝ↑2 , ℝ↑2 ),	𝑝≥𝑟.	
	 𝐺↓𝑞 (ℎ,ℎ)≤ 𝑐↓𝑞 ‖ℎ‖↓𝑟,∞ .	
	 𝑞↦𝐺_𝑞(ℎ,ℎ)	is	 𝐶↑1 .	
	 𝑞↦𝐷(𝑞, 𝑞↓1 )	is	 𝐶↑1 .	



Maximum Principle
	 These	assump.ons	ensure	that	Pontryagin’s	maximum	principle	is	true:	let	
𝐻↓𝑣 (𝑝,𝑞)= 𝑝𝑣∘𝑞 − 1/2 ‖𝑣‖↓𝑞↑2 .	
	 Then,	along	op.mal	solu.ons,	there	exists	𝑝:[0,1]→𝒬↑∗ 	such	that	
	
{█𝑞 = 𝜕↓𝑝 𝐻↓𝑣  𝑝 =− 𝜕↓𝑞 𝐻↓𝑣  𝑣=𝑎𝑟𝑔𝑚𝑎𝑥↓𝑤 𝐻↓𝑤 (𝑝,𝑞)   	



Reduc0on
	 The	PMP	implies	that	𝑣=𝐾𝜉↓𝑞↑∗ 𝛼	for	some	𝛼∈ 𝒬↑∗ .		for	some	𝛼∈ 𝒬↑∗ .	
	 Use	𝛼	to	reparametrize	the	problem.		to	reparametrize	the	problem.	

	 Minimize		
1/2 ∫0↑1▒‖𝛼(𝑡)‖↓𝑞(𝑡)↑2 𝑑𝑡 +𝑑(𝑞(1), 𝑞↓1 )	
with	 𝑞 = 𝐾↓𝑞 𝛼,	where	
	 𝐾↓𝑞 = 𝜉↓𝑞 𝐾𝜉↓𝑞↑∗ 	and	 ‖𝛼‖↓𝑞↑2 =𝜆𝛼𝐾↓𝑞 𝛼 + 𝐺↓𝑞 (𝐾↓𝑞 𝛼, 𝐾↓𝑞 𝛼).	



𝐻↑1 norms in experiments
	 Let	ℎ	be	a	vector	field	along	𝑞.	.	
	 𝐻↑1 	norm:	
𝐺↓𝑞 (ℎ,ℎ)=∫0↑𝑙(𝑞)▒|𝜕↓𝑠 ℎ|↑2 𝑑𝑠 	
where	𝑙(𝑞)=length(𝑞).	
	 Rescaled	𝐻↑1 :	
𝐺↓𝑞 (ℎ,ℎ)= 1/𝑙(𝑞) ∫0↑𝑙(𝑞)▒|𝜕↓𝑠 ℎ|↑2 𝑑𝑠 	
	



𝐻↑1 norms in experiments
	 Rota.on	corrected	𝐻↑1 :	
𝐺↓𝑞 (ℎ,ℎ)=∫0↑𝑙(𝑞)▒|𝜕↓𝑠 ℎ|↑2 𝑑𝑠 − 1/𝑙(𝑞) (∫0↑1▒𝜕↓𝑠 ℎ↑𝑇 𝑁↓𝑞 𝑑𝑠  )↑2 	
	 	
Rota.on	and	scale	corrected	rescaled	𝐻↑1 :	
𝐺↓𝑞 (ℎ,ℎ)= 1/𝑙(𝑞) ∫0↑𝑙(𝑞)▒|𝜕↓𝑠 ℎ|↑2 𝑑𝑠  − (1/𝑙(𝑞) ∫0↑1▒𝜕↓𝑠 ℎ↑𝑇 𝑁↓𝑞 𝑑𝑠  
)↑2 − (1/𝑙(𝑞) ∫0↑1▒𝜕↓𝑠 ℎ↑𝑇 𝑇↓𝑞 𝑑𝑠  )↑2 	
where	𝑇↓𝑞 	is	the	unit	tangent	to	𝑞	and	 𝑁↓𝑞 	the	unit	normal.	
	



Cost func0on
	 We	used	a	version	of	the	varifold	norm	introduced	by	Trouvé	and	Charon:	
𝐷(𝑞, 𝑞↓1 )= ‖𝑞‖↓𝜒↑2 −2⟨𝑞, 𝑞↓1 ⟩↓𝜒 + ‖𝑞↓1 ‖↓𝜒↑2 	
with	

	
⟨𝑞, 𝑞↓1 ⟩↓𝜒 =∫𝑆↑1 ↑▒∫𝑆↑1 ↑▒█𝜒(𝑞(𝑢),𝑞(𝑢↓1 ))(1+𝑐(𝑁↓𝑞 (𝑢)↑𝑇 𝑁↓𝑞↓1  (
𝑢↓1 ))↑2 ) ×|𝑞↑′ (𝑢)| |𝑞↓1↑′ (𝑢↓1 )|𝑑𝑢↓1 𝑑𝑢   	
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