# Kernel Based High Order Schemes for Vlasov Simulations and Other Time Dependent Problems with Non-smooth Solutions 

Wei Guo

Michigan State University<br>Department of Mathematics

SIAM CSE17, Mar., 2017
Joint work with Andrew Christlieb and Yan Jiang (MSU)

## Outline

- Method of lines transpose approach for Vlasov simulations
- A new formulation for general nonlinear time dependent problems
- Summary and future work


## Method of lines (MOL)

## Space discretization $\Rightarrow$ time evolution

- explicit:
- easy to implement
- restriction on time step
- implicit:
- larger time step
- need to solve the system


## Method of lines transpose $\left(\mathrm{MOL}^{\top}\right)$

As opposed to MOL approaches, the method of lines transpose $\left(\mathrm{MOL}^{T}\right)$ schemes

- discretize in time first;
- solve the resulting boundary value problem (BVP) at discrete time levels;
- also known as Rothe's method Schemann, Bornemann (98), Salazar et al. (00).


## One-dimensional advection equation

$$
\begin{equation*}
u_{t}+c u_{x}=0, \quad x \in[a, b] \tag{1}
\end{equation*}
$$

- periodic boundary condition
- Dirichlet boundary condition

$$
u(a, t)=g_{1}(t), \text { for } c>0, \quad \text { or } \quad u(b, t)=g_{2}(t), \text { for } c<0
$$

- Neumann boundary condition

$$
u_{x}(a, t)=h_{1}(t), \text { for } c>0, \quad \text { or } \quad u_{x}(b, t)=h_{2}(t), \text { for } c<0
$$

- uniform mesh $a=x_{0}<x_{1}<\cdots<x_{M-1}<x_{M}=b$ with $\Delta x=\frac{(b-a)}{M}$.


## $\mathrm{MOL}^{\top}$ framework

- backward Euler: $\frac{u^{n+1}-u^{n}}{\Delta t}+c u_{x}^{n+1}=0$.
- BVP $(c>0)$

$$
\begin{gather*}
\mathcal{L}_{L}[\alpha]\left(u^{n+1}\right)=\left(\mathcal{I}+\frac{1}{\alpha} \partial_{x}\right) u^{n+1}=u^{n} \\
u^{n+1}(x)=\mathcal{L}_{L}^{-1}[\alpha]\left(u^{n}\right)=\iota^{L}\left[u^{n}, \alpha\right](x)+A^{n+1} e^{-\alpha(x-a)} \tag{2}
\end{gather*}
$$

where $\alpha=1 /(c \Delta t)$, and

$$
\begin{equation*}
I^{L}\left[u^{n}, \alpha\right](x) \doteq \alpha \int_{a}^{x} e^{-\alpha(x-y)} u^{n}(y) d y \tag{3}
\end{equation*}
$$

Remark: The scheme is implicit. But we do not need to invert the linear matrix.

## Recursive form

Let $l_{i}^{L}=I^{L}\left[u^{n}, \alpha\right]\left(x_{i}\right)$ :

$$
\begin{equation*}
I_{i}^{L}=I_{i-1}^{L} e^{-\alpha \Delta x}+J_{i}^{L}, \quad i=1, \cdots, M, \quad I_{0}^{L}=0, \tag{4}
\end{equation*}
$$

where

$$
J_{i}^{L} \doteq \alpha \int_{x_{i-1}}^{x_{i}} u^{n}(y) e^{-\alpha\left(x_{i}-y\right)} d y .
$$

Remark 1: The recursive form is developed in Causley, Christlieb, Guclu, Wolf (13).
Remark 2: The existing $\mathrm{MOL}^{\top}$ schemes mainly use linear interpolation (quadrature) methods to compute $J_{i}^{L}$, which work well for smooth problems.

## Weighted essentially non-oscillatory (WENO)

$J_{i}^{L} \doteq \alpha \int_{x_{i-1}}^{x_{i}} u^{n}(y) e^{-\alpha\left(x_{i}-y\right)} d y:$


- small stencil $S_{r}: u^{n}(x) \Rightarrow p_{r}(x) \Rightarrow J_{i, r}^{L}=\sum_{j=0}^{2} c_{i-3+r+j}^{(r)} u_{i-3+r+j}^{n}$
- big stencil $S: u^{n}(x) \Rightarrow p(x) \Rightarrow J_{i}^{L}=\sum_{r=0}^{2} d_{r} J_{i, r}^{L}$
- nonlinear weights: $d_{r} \Rightarrow \omega_{r}$ by smoothness indicators

$$
\omega_{r}=d_{r}+O\left(\Delta x^{2}\right) \text { or } \omega_{r}= \begin{cases}O(1), & u^{n}(x) \text { is smooth in } S_{r} \\ O\left(\Delta x^{4}\right), & u^{n}(x) \text { has a discontinuity inside } S_{r}\end{cases}
$$

- final result

$$
J_{i}^{L}=\sum_{r=0}^{2} \omega_{r} J_{i, r}^{L}
$$

## High order time discretization

$$
u_{t}=F(u)
$$

Strong-stability-preserving (SSP) diagonally implicit Runge-Kutta (DIRK) methods: RK (s,k)

$$
\begin{align*}
& u^{(i)}=u^{n}+\Delta t \sum_{j=1}^{i} a_{i j} F\left(u^{(j)}, t_{n}+c_{j} \Delta t\right), \quad i \leq s  \tag{5a}\\
& u^{n+1}=u^{n}+\Delta t \sum_{j=1}^{s} b_{j} F\left(u^{(j)}, t_{n}+c_{j} \Delta t\right) \tag{5b}
\end{align*}
$$

## Splitting framework

$$
u_{t}+f(y, t) u_{x}+g(x, t) u_{y}=0 \Rightarrow \begin{cases}u_{t}+f(y, t) u_{x} & =0 \\ u_{t}+g(x, t) u_{y} & =0\end{cases}
$$

- The fourth order splitting is

$$
\begin{aligned}
u^{n+1}= & Q_{2}((\alpha+1 / 2) \Delta t) \cdot Q_{1}((2 \alpha+1) \Delta t) \cdot Q_{2}(-\alpha \Delta t) \cdot Q_{1}(-(4 \alpha+1) \Delta t) . \\
& Q_{2}(-\alpha \Delta t) \cdot Q_{1}((2 \alpha+1) \Delta t) \cdot Q_{2}((\alpha+1 / 2) \Delta t) u^{n},
\end{aligned}
$$

where $\alpha=\left(2^{1 / 3}+2^{-1 / 3}-1\right) / 6$.

## Rigid body rotation

$$
\begin{equation*}
u_{t}+y u_{x}-x u_{y}=0, \quad x, y \in \Omega \tag{6}
\end{equation*}
$$

- continuous initial condition, with $\Omega=\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right]^{2}$

$$
u(x, y, 0)=0.5 B\left(\sqrt{x^{2}+8 y^{2}}\right)+0.5 B\left(\sqrt{8 x^{2}+y^{2}}\right)
$$

where $B(r)= \begin{cases}\cos (r)^{6}, & \text { if } r \leq \frac{1}{2} \pi, \\ 0, & \text { otherwise. }\end{cases}$

- dicontinuous initial condition, with $\Omega=[-1,1]^{2}$

$$
u(x, y, 0)= \begin{cases}1, & (x, y) \in[-0.75,0.75] \times[-0.25,0.25] \cup \\ & {[-0.25,0.25] \times[-0.75,0.75]} \\ 0, & \text { otherwise }\end{cases}
$$

- 5-th order WENO integration. $\mathrm{RK}(4,4)$ with $C F L=2.9$.

Table: $T=2 \pi$.

|  |  | $N_{x} \times N_{y}$ | $L_{1}$ errors | order | $L_{\infty}$ error | order | min value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Periodic boundary condition. | Without PP-limiters | $40 \times 40$ | $6.26 \mathrm{E}-02$ | - | 7.43E-02 | - | -1.21E-03 |
|  |  | $80 \times 80$ | $5.10 \mathrm{E}-03$ | 3.62 | $7.49 \mathrm{E}-03$ | 3.31 | -6.88E-05 |
|  |  | $160 \times 160$ | $1.53 \mathrm{E}-04$ | 5.05 | $2.75 \mathrm{E}-04$ | 4.77 | -4.76E-06 |
|  |  | $320 \times 320$ | 4.13E-06 | 5.22 | 7.56E-06 | 5.18 | -1.03E-07 |
|  | With PP-limiters | $40 \times 40$ | $6.19 \mathrm{E}-02$ | - | $7.43 \mathrm{E}-02$ | - | $1.00 \mathrm{E}-16$ |
|  |  | $80 \times 80$ | $5.06 \mathrm{E}-03$ | 3.61 | 7.50E-03 | 3.31 | $1.00 \mathrm{E}-16$ |
|  |  | $160 \times 160$ | $1.52 \mathrm{E}-04$ | 5.06 | $2.75 \mathrm{E}-04$ | 4.77 | $1.00 \mathrm{E}-16$ |
|  |  | $320 \times 320$ | 4.10E-06 | 5.21 | 7.56E-06 | 5.18 | $1.00 \mathrm{E}-16$ |
| Dirichlet boundary condition. | Without PP-limiters | $40 \times 40$ | $6.08 \mathrm{E}-02$ | - | $7.43 \mathrm{E}-02$ | - | -1.67E-05 |
|  |  | $80 \times 80$ | $4.98 \mathrm{E}-03$ | 3.61 | $7.49 \mathrm{E}-03$ | 3.31 | -2.50E-05 |
|  |  | $160 \times 160$ | $1.34 \mathrm{E}-04$ | 5.22 | $2.75 \mathrm{E}-04$ | 4.77 | -4.76E-06 |
|  |  | $320 \times 320$ | 3.73E-06 | 5.16 | 7.56E-06 | 5.18 | -1.03E-07 |
|  | With PP-limiters | $40 \times 40$ | 6.09E-02 | - | $7.43 \mathrm{E}-02$ | - | 0.00E+00 |
|  |  | $80 \times 80$ | $4.98 \mathrm{E}-03$ | 3.61 | $7.49 \mathrm{E}-03$ | 3.31 | 0.00E+00 |
|  |  | $160 \times 160$ | $1.34 \mathrm{E}-04$ | 5.22 | $2.75 \mathrm{E}-04$ | 4.77 | 0.00E+00 |
|  |  | $320 \times 320$ | 3.72E-06 | 5.17 | 7.56E-06 | 5.18 | $0.00 \mathrm{E}+00$ |
| Neumann boundary condition. | Without PP-limiters | $40 \times 40$ | $6.08 \mathrm{E}-02$ | - | 7.43E-02 | - | -1.66E-05 |
|  |  | $80 \times 80$ | $4.98 \mathrm{E}-03$ | 3.61 | $7.49 \mathrm{E}-03$ | 3.31 | -2.50E-05 |
|  |  | $160 \times 160$ | $1.34 \mathrm{E}-04$ | 5.22 | $2.75 \mathrm{E}-04$ | 4.77 | -4.76E-06 |
|  |  | $320 \times 320$ | 3.73E-06 | 5.16 | 7.56E-06 | 5.18 | -1.03E-07 |
|  | With PP-limiters | $40 \times 40$ | $6.09 \mathrm{E}-02$ | - | $7.43 \mathrm{E}-02$ | - | $0.00 \mathrm{E}+00$ |
|  |  | $80 \times 80$ | $4.98 \mathrm{E}-03$ | 3.61 | $7.49 \mathrm{E}-03$ | 3.31 | $0.00 \mathrm{E}+00$ |
|  |  | $160 \times 160$ | $1.34 \mathrm{E}-04$ | 5.22 | $2.75 \mathrm{E}-04$ | 4.77 | $0.00 \mathrm{E}+00$ |
|  |  | $320 \times 320$ | 3.72E-06 | 5.17 | 7.56E-06 | 5.18 | $0.00 \mathrm{E}+00$ |



Figure: $T=2 \pi$.

## Vlasov-Poisson (VP) system

$$
\begin{align*}
& f_{t}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\mathbf{E}(\mathbf{x}, t) \cdot \nabla_{\mathbf{v}} f=0, \quad \mathbf{x} \times \mathbf{v} \in \Omega_{\mathbf{x}} \times \Omega_{\mathbf{v}}  \tag{7a}\\
& \mathbf{E}(\mathbf{x}, t)=-\nabla_{\mathbf{x}} \phi(\mathbf{x}, t), \quad-\Delta_{\mathbf{x}} \phi(\mathbf{x}, t)=\rho(\mathbf{x}, t)-1 \tag{7b}
\end{align*}
$$

- describe the dynamics of charged particles due to the self-consistent electric force
- $f(\mathbf{x}, \mathbf{v}, t)$ : probability of finding a particle with velocity $\mathbf{v}$ at position $\mathbf{x}$ at time $t$
- E: electrostatic field
- $\phi$ : self-consistent electrostatic potential
- $\rho(\mathbf{x}, t)$ : electron charge density $\rho(\mathbf{x}, t)=\int_{\Omega_{v}} f(\mathbf{x}, \mathbf{v}, t) d \mathbf{v}$


## The VP systems

- Strong Landau damping:

$$
f(x, v, 0)=\frac{1}{\sqrt{2 \pi}}(1+\alpha \cos (k x)) \exp \left(-\frac{v^{2}}{2}\right),
$$

$x \in[0, L], v \in\left[-V_{c}, V_{c}\right]$, where $\alpha=0.5, k=0.5, L=4 \pi$ and $V_{c}=2 \pi$.

- Two-stream instability I:

$$
f(x, v, 0)=\frac{2}{7 \sqrt{2 \pi}}\left(1+5 v^{2}\right)(1+\alpha((\cos (2 k x)+\cos (3 k x)) / 1 \cdot 2+\cos (k x))) \exp \left(-\frac{v^{2}}{2}\right)
$$

$x \in[0, L], v \in\left[-V_{c}, V_{c}\right]$, where $\alpha=0.01, k=0.5, L=4 \pi$ and $V_{c}=2 \pi$.

- Two-stream instability II:

$$
f(x, v, 0)=\frac{1}{\sqrt{2 \pi}}(1+\alpha \cos (k x)) v^{2} \exp \left(-\frac{v^{2}}{2}\right),
$$

$x \in[0, L], v \in\left[-V_{c}, V_{c}\right]$, where $\alpha=0.05, k=0.5, L=4 \pi$ and $V_{c}=2 \pi$.

- Bump-on-tail instability:

$$
f(x, v, 0)=\frac{1}{\sqrt{2 \pi}}(1+\alpha \cos (k x))\left(0.9 \exp \left(-0.5 v^{2}\right)+0.2 \exp \left(-4(v-4.5)^{2}\right)\right)
$$

$x \in[-L, L], v \in\left[-V_{c}, V_{c}\right]$, where $\alpha=0.04, k=0.3, L=\frac{10}{3} \pi$ and $V_{c}=10$.

(a) Strong Landau Damping. $\mathrm{T}=40$.

(c) Two-stream instability II. $\mathrm{T}=40$.

(b) Two-stream instability I. $\mathrm{T}=40$.

(d) Bump-on-tail instability. $\mathrm{T}=60$.

## The time evolution of relative deviation in $L^{1}$ norm


(e) Strong Landau damping

(g) Two-stream instability II

(f) Two-stream instability I

(h) Bump-on-tail instability

## New differential operators

Define

$$
\begin{array}{ll}
\mathcal{L}_{L}=\mathcal{I}+\frac{1}{\alpha} \partial_{x}, & \mathcal{D}_{L}=\mathcal{I}-\mathcal{L}_{L}^{-1} \\
\mathcal{L}_{R}=\mathcal{I}-\frac{1}{\alpha} \partial_{x}, & \mathcal{D}_{R}=\mathcal{I}-\mathcal{L}_{R}^{-1} \tag{8b}
\end{array}
$$

where, $\alpha>0$ is a constant. $\mathcal{L}_{L}^{-1}$ and $\mathcal{L}_{R}^{-1}$ can be computed via the WENO method we discussed.
Then,

$$
\begin{align*}
& \frac{1}{\alpha} \partial_{x}=\mathcal{L}_{L}\left(\mathcal{I}-\mathcal{L}_{0}^{-1}\right)=\mathcal{D}_{L} /\left(\mathcal{I}-\mathcal{D}_{L}\right)=\sum_{p=1}^{\infty} \mathcal{D}_{L}^{p}  \tag{9a}\\
& \frac{1}{\alpha} \partial_{x}=\mathcal{L}_{R}\left(\mathcal{L}_{R}^{-1}-\mathcal{I}\right)=-\mathcal{D}_{R} /\left(\mathcal{I}-\mathcal{D}_{R}\right)=-\sum_{p=1}^{\infty} \mathcal{D}_{R}^{p} \tag{9b}
\end{align*}
$$

- Successive convolution Causley, Christlieb (14).


## Second order derivative

$$
\begin{gather*}
\mathcal{L}_{0}=\mathcal{I}-\frac{1}{\alpha^{2}} \partial_{x x}, \quad \mathcal{D}_{0}=\mathcal{I}-\mathcal{L}_{0}^{-1}  \tag{10a}\\
\frac{1}{\alpha^{2}} \partial_{x x}=\mathcal{L}_{0}\left(\mathcal{L}_{0}^{-1}-\mathcal{I}\right)=-\mathcal{D}_{0} /\left(\mathcal{I}-\mathcal{D}_{0}\right)=-\sum_{p=1}^{\infty} \mathcal{D}_{0}^{p} \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\mathcal{L}_{0}^{-1}[v, \alpha](x)=\frac{\alpha}{2} \int_{a}^{b} e^{-\alpha|x-y|} v(y) d y+A_{0} e^{-\alpha(x-a)}+B_{0} e^{-\alpha(b-x)} \tag{12}
\end{equation*}
$$

where $A_{0}, B_{0}$ are obtained through boundary conditions. We can evaluate the convolution integral based on the WENO scheme as well.

## $k^{\text {th }}$ order scheme

Consider the nonlinear convection-diffusion equation:

$$
u_{t}=-f(u)_{x}+g(u)_{x x} .
$$

Then $k^{t h}$ order scheme is obtained by truncating the series with the first $k$ terms. In particular,

$$
-f(u)_{x} \approx-\frac{\gamma}{c \Delta t} \sum_{p=1}^{k} \mathcal{D}_{L}^{p}\left[f^{+}(u), \frac{\gamma}{c \Delta t}\right](x)+\frac{\gamma}{c \Delta t} \sum_{p=1}^{k} \mathcal{D}_{R}^{p}\left[f^{-}(u), \frac{\gamma}{c \Delta t}\right](x),
$$

and

$$
g(u)_{x x} \approx-\frac{\gamma}{b \Delta t} \sum_{p=1}^{k} \mathcal{D}_{0}^{p}\left[g(u), \sqrt{\frac{\gamma}{b \Delta t}}\right](x),
$$

where $\gamma>0$ is a parameter associated with the stability of the scheme, e.g., $\gamma_{\text {max }}=0.4167$ for $k=3$. $b=\max _{u}\left|g^{\prime}(u)\right|, c=\max _{u}\left|f^{\prime}(u)\right|$, and $f^{ \pm}(u)$ are obtained by flux splitting of $f(u)$. Then the scheme is $k^{\text {th }}$ order

## Time discretization

- We use a third order Runge-Kutta numerical scheme for time discretization.
- In the numerical tests, we choose the time step as

$$
\Delta t=C F L \times \Delta x / \max (b, c)
$$

## Linear advection-diffusion equation

Consider

$$
\left\{\begin{array}{l}
u_{t}+c u_{x}=b u_{x x}, \quad x \in[-\pi, \pi] \\
u(x, 0)=\sin (x)
\end{array}\right.
$$

with $b=0.01$ and $c=1$.
Table: Accuracy test: errors and orders of accuracy at $T=2$. Third order scheme.

| CFL | $N_{x}$ | $L_{1}$ errors | order | $L_{\infty}$ error | order |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 40 | $6.00 \mathrm{E}-02$ | - | $9.43 \mathrm{E}-02$ | - |
|  | 80 | $8.81 \mathrm{E}-03$ | 2.77 | $1.38 \mathrm{E}-02$ | 2.77 |
|  | 160 | $1.16 \mathrm{E}-03$ | 2.93 | $1.82 \mathrm{E}-03$ | 2.93 |
|  | 320 | $1.46 \mathrm{E}-04$ | 2.99 | $2.30 \mathrm{E}-04$ | 2.99 |
|  | 640 | $1.84 \mathrm{E}-05$ | 3.00 | $2.88 \mathrm{E}-05$ | 3.00 |
|  | 40 | $4.36 \mathrm{E}-01$ | - | $6.85 \mathrm{E}-01$ | - |
|  | 80 | $3.34 \mathrm{E}-01$ | 0.38 | $5.25 \mathrm{E}-01$ | 0.38 |
|  | 160 | $1.06 \mathrm{E}-01$ | 1.65 | $1.67 \mathrm{E}-01$ | 1.65 |
|  | 320 | $1.67 \mathrm{E}-02$ | 2.67 | $2.63 \mathrm{E}-02$ | 2.67 |
|  | 640 | $2.23 \mathrm{E}-03$ | 2.91 | $3.50 \mathrm{E}-03$ | 2.91 |

## Buckley-Leverett equation

Consider

$$
\begin{equation*}
u_{t}+\left(\frac{u^{2}}{u^{2}+(1-u)^{2}}\right)_{x}=0.01\left(\nu(u) u_{x}\right)_{x} \tag{13}
\end{equation*}
$$

In the numerical simulation, we choose $\epsilon=0.01$, and

$$
\nu(u)=\left\{\begin{array}{ll}
4 u(1-u), & 0 \leq u \leq 1 \\
0, & \text { otherwise }
\end{array}, \quad u(x, 0)= \begin{cases}1-3 x, & 0 \leq x \leq 1 / 3 \\
0, & 1 / 3<x \leq 1\end{cases}\right.
$$


(i) $k=3 . \quad T=0.2 . N=200$.

## Strong degenerate parabolic convection-diffusion equation

Consider

$$
\begin{equation*}
u_{t}+\left(u^{2}\right)_{x}=0.1\left(\nu(u) u_{x}\right)_{x} \tag{14}
\end{equation*}
$$

where
$\nu(u)=\left\{\begin{array}{ll}0, & |u| \leq 0.25 \\ 1, & |u|>0.25\end{array} \quad u(x, 0)= \begin{cases}1, & -\frac{1}{\sqrt{2}}-0.4<x<-\frac{1}{\sqrt{2}}+0.4 \\ -1, & \frac{1}{\sqrt{2}}-0.4<x<\frac{1}{\sqrt{2}}+0.4 \\ 0, & \text { otherwise }\end{cases}\right.$

(j) $k=3 . \quad T=0.2 . \quad N=400$.

## Conclusion and future work

- The proposed high order kernel based on algorithm is very efficient to simulate the Vlasov equation and other time dependent problems including the nonlinear degenerate convection-diffusion equations.
- The extension to systems and more complex models is under development.

Thank You!
$\qquad$

