Testing of HPC
Scientific Software

SIAM CSE17
Atlanta, GA
February 28, 2017

Tutorial slides available at: http://bit.ly/siam-csel7-mt3

Acknowledgments

Argonne, a U.S. Department of Energy Office of Science

laboratory, is operated under Contract No. DE-ACO2-
06CH11357.

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000. SAND
NO. 2016-8466 C.

IDEAS

SIAM CSE17, Feb 2017 productivity

Outline

Introduction

Scientific software verification

How to evaluate needs of a project and devise a
testing regime

Testing during refactoring

Hands on - Code coverage

Demo - Continuous integration

IDEAS

SIAM CSE17, Feb 2017 productivity

- Introduction

Why is testing important?
Definitions

IDEAS

productivity

Benefits of testing

Promotes high-quality software that delivers
correct results and improves confidence

Increases quality and speed of development,
reducing development and maintenance costs

Maintains portability to a variety of systems and
compilers

Helps in refactoring

Avoid introducing new errors when adding new
features

Avoid reintroducing old errors

IDEAS

SIAM CSE17, Feb 2017 productivity

How common are bugs?
N

Programs do not acquire bugs as people acquire germs, by
hanging around other buggy programs. Programmers must

insert them.
- Harlan Mlills

-1 Bugs per 1000 lines of code (KLOC)

o Industry average for delivered software
o 1-25 errors

- Microsoft Applications Division
1 10-20 defects during in-house testing
1 0.5 in released product

Code Complete (Steven McConnell)
IDEAS

SIAM CSE17, Feb 2017 productivity

Why testing is important:

the protein structures of Geoffrey Chang

Some inherited code flipped two columns of data,
inverting an electron-density map

Resulted in an incorrect protein structure
Retracted 5 publications

One was cited 364 times

Many papers and grant applications conflicting
with his results were rejected

IDEAS
SIAM CSE17, Feb 2017

productivity

Why testing is important:
the 40 second flight of the Ariane 5

Ariane 5: a European orbital launch vehicle meant to
lift 20 tons into low Earth orbit

Initial rocket went off course, started to disintegrate,
then self-destructed less than a minute after launch

Seven variables were at risk of leading to an Operand
Error (due to conversion of floating point to integer)

Four were protected

Investigation concluded insufficient test coverage as
one of the causes for this accident

Resulted in a loss of $370,000,000.

IDEAS

SIAM CSE17, Feb 2017 productivity

Why testing is important:
the Therac-25 accidents

Therac-25: a computer-controlled radiation therapy
machine

Minimal software testing
Race condition in the code went undetected

Unlucky patients were struck with approximately 100
times the intended dose of radiation, ~ 15,000 rads

Error code indicated that no dose of radiation was
given, so operator instructed machine to proceed

Recalled after six accidents resulting in death and
serious injuries

IDEAS

SIAM CSE17, Feb 2017 productivity

Definitions

Unit tests

Test individual functions or classes
Integration tests
Test interaction, build complex hierarchy

System level tests

At the user interaction level

IDEAS

SIAM CSE17, Feb 2017 productivity

Definitions

Restart tests
Code starts transparently from a checkpoint

Regression (no-change) tests
Compare current observable output to a gold standard

Performance tests

Focus on the runtime and resource utilization

IDEAS

SIAM CSE17, Feb 2017 productivity

Policies on testing practices

Avoid regression suites consisting of system-|level
no-change tests

Tests often need to be re-baselined
Often done without verification of new gold-standard

Hard to maintain across multiple platforms
Loose tolerances can allow subtle defects to appear

IDEAS

SIAM CSE17, Feb 2017 productivity

Policies on testing practices

Must have consistent policy on dealing with failed
tests

Issue tracking
How quickly does it need to be fixed?
Who is responsible for fixing it?

Add regression test afterwards (to avoid reintroducing
issue later)
Someone needs to be in charge of watching the
test suite

IDEAS

SIAM CSE17, Feb 2017 productivity

Policies on testing practices

When refactoring or adding new features, run a
regression suite before checkin

Be sure to add new regression tests for the new
features

Require a code review before releasing test suite
Another person may spot issues you didn’t
Incredibly cost-effective

IDEAS

SIAM CSE17, Feb 2017 productivity

Example: Trilinos checkin test script

Detects which packages were modified by your
commits

Determines which packages you potentially broke

Configures, builds, and tests those packages

On success, pushes to repo
On failure, reports why it failed

Useful for ensuring your changes don’t break
another package

May take a while, but many people run it overnight

IDEAS

SIAM CSE17, Feb 2017 productivity

Maintenance of a test suite

Testing regime is only useful if it is
Maintained
Tests and benchmarks periodically updated

Monitored regularly
Can be automated

Has rapid response to failure
Tests should pass most of the time

SIAM CSE17, Feb 2017

IDEAS

productivity

Use of test harnesses

TN
-1 Essential for large code

o Set up and run tests Jenkins
C-dash
o1 Evaluate test results
Custom
-1 Easy to execute a logical subset of tests (FlashTest)
o1 Pre-push
o1 Nightly

-1 Automation of test harness is critical for
o1 Long-running test suites
o1 Projects that support many platforms

IDEAS

SIAM CSE17, Feb 2017 productivity

Example: Trilinos automated testing

Trilinos

|:- ..I Y . _ .I .] --] .::-:-
"M '?[gaslﬂ:l oard Calendar Previous Current

Project

Project

Project

Trilings "W
SubProjects

Project

Teuchos
ThreadPool
Sacado
RTOp
Kokkos
Epelra
Zohan
Shards
GlobiPack

IDEAS
SIAM CSE17, Feb 2017

productivity

- Scientific Software Verification

Challenges specific to scientific software

Verification

Code verification uses tests

It is much more than a collection of tests

It is the holistic process through which you ensure
that

Your implementation shows expected behavior,
Your implementation is consistent with your model,

Science you are trying to do with the code can be
done.

IDEAS
SIAM CSE17, Feb 2017 productivity

Simplified schematic of science
through computation

This is for simulations,

Physical World but the philosophy
applies to other

computations too.

Model

Discretize

Model
fidelity
Validation
Implementation

Verify accuracy
stability

Many stages in the
lifecycle have
components that
may themselves be
under research =>
need modifications

Model

fidelit .
Y Difference

egquations

Numerical
solvers

IDEAS

SIAM CSE17, Feb 2017 productivity

CSE verification challenges

Floating point issues

Different results
On different platforms and runs

lll-conditioning can magnify these small differences
Final solution may be different
Number of iterations may be different

Unit testing

Sometimes producing meaningful testable behavior
too dependent upon other parts of the code

Definitions don’t always fit

IDEAS

SIAM CSE17, Feb 2017 productivity

CSE verification challenges

Integration testing may have hierarchy too

Particularly true of codes that allow composability

in their configuration

Codes may incorporate some legacy components
Its own set of challenges

No existing tests of any granularities
Examples — multiphysics application codes that
support multiple domains

IDEAS

SIAM CSE17, Feb 2017 productivity

Stages and types of verification

During initial code development
Accuracy and stability
Matching the algorithm to the model
Interoperability of algorithms

In later stages

While adding new major capabilities or modifying
existing capabilities

Ongoing maintenance
Preparing for production

IDEAS

SIAM CSE17, Feb 2017 productivity

Stages and types of verification

o2 4
o If refactoring

o1 Ensuring that behavior remains consistent and
expected

- All stages have a mix of automation and human-
Intervention

Note that the stages apply to the whole code as

well as its components

IDEAS

SIAM CSE17, Feb 2017 productivity

How to evaluate project needs

And devise a testing regime

Why not always use the most
stringent testing?

Effort spent in devising tests and testing regime are
a tax on team resources

When the tax is too high...
Team cannot meet code-use objectives

When is the tax is too low...
Necessary oversight not provided
Defects in code sneak through

IDEAS

SIAM CSE17, Feb 2017 productivity

Evaluating project needs

Objectives: expected use of the code

Team: size and degree of heterogeneity

Lifecycle stage: new or production or refactoring
Lifetime: one off or ongoing production
Complexity: modules and their interactions

IDEAS

SIAM CSE17, Feb 2017 productivity

Commonalities

Unit testing is always good
It is unlikely to be sufficient

Verification of expected behavior

Understanding the range of validity and
applicability is always important
Especially for individual solvers

SIAM CSE17, Feb 2017

IDEAS

productivity

Test Development

Development of tests and diagnostics goes hand-in-
hand with code development
Non-trivial to devise good tests, but extremely important

Compare against simpler analytical or semi-analytical
solutions
They can also form a basis for unit testing
In addition to testing for “correct” behavior, also test
for stability, convergence, or other such desirable
characteristics

Many of these tests go into the test-suite

IDEAS

SIAM CSE17, Feb 2017 productivity

Example from Flash

Grid ghost cell fill

Use some function to initialize domain

Two variables, in one only interior cells initialized, in the other
ghost cells also initialized

Run ghost cell fill on the first variable — now both should be
identical within known tolerance

Use redundant mechanisms

IDEAS

SIAM CSE17, Feb 2017 productivity

Against manufactured solution

Verification of guard nyﬁfy;;mn;"‘;u:{
cell fill
Use two variables A & B
Initialize A including 4
guard cells and B I

excluding them jm12¢g /
Apply guard cell fill to B +

SIAM CSE17, Feb 2017 productivity

Example from Flash

Eos
Use initial conditions from a known problem

Apply eos in two different modes — at the end all variables
should be consistent within tolerance

Hydrodynamics

Sedov blast problem has a known analytical solution
Runs with UG and AMR

IDEAS

SIAM CSE17, Feb 2017 productivity

Against analytical solution

1 Sedov blast wave

-1 High pressure at the center

-1 Shock moves out spherically ¢
1 FLASH with AMR and hydro
1 Known analytical solution

Though it exercises both mesh, hydro and eos, if mesh

and eos are verified first, then this test verifies hydro

IDEAS

SIAM CSE17, Feb 2017 productivity

Building confidence

First two unit tests are stand-alone

The third test depends on Grid and Eos
Not all of Grid functionality it uses is unit tested

Flux correction in AMR

If Grid and Eos tests passed and Hydro failed

If UG version failed then fault is in hydro

If UG passed and AMR failed the fault is likely in flux
correction

IDEAS

SIAM CSE17, Feb 2017 productivity

Development phase — adding on

Few more steps when adding new components to
existing code
Know the existing components it interacts with
Verify its interoperability with those components
Verify that it does not inadvertently break some
unconnected part of the code
May need addition of tests not just for the new
component but also for some of the old components

This part is often overlooked to the detriment of the
overall verification

IDEAS

SIAM CSE17, Feb 2017 productivity

Selection of tests

Important to aim for quick diagnosis of error

A mix of different granularities works well
Unit tests for isolating component or sub-component level faults

Integration tests with simple to complex configuration and
system level

Restart tests

Rules of thumb
Simple
Enable quick pin-pointing
Full paper

IDEAS

SIAM CSE17, Feb 2017 productivity

Approach

Build a matrix
Physics along rows
Infrastructure along columns
Alternative implementations, dimensions, geometry

Mark <i,j> if test covers corresponding features
Follow the order

All unit tests — including full module tests
Tests representing ongoing productions
Tests sensitive to perturbations

Most stringent tests for solvers

Least complex test to cover remaining spots

IDEAS
SIAM CSE17, Feb 2017 productivity

Example

Hydro EOS Gravity Burn Particles
AMR CL CL CL CL
UG SV SV SV
Multigrid | WD WD WD WD
FFT PT
Tests Symbol A test on the same row indicates
Sedov SV interoperability between corresponding
Cellular cL physics
Poisson PT Similar logic would apply to tests on the
White Dwarf WD same column for infrastructure

More goes on, but this is the primary
methodology

IDEAS

SIAM CSE17, Feb 2017 productivity

Refactoring

Testing needs during code refactor

Considerations

Know why you are refactoring
Know the scope of refactoring
Know bounds on acceptable behavior change

Know your error bounds
Bitwise reproduction of results unlikely after transition

Map from here to there
Check for coverage provided by existing tests
Develop new tests where there are gaps

IDEAS

SIAM CSE17, Feb 2017 productivity

Challenges with legacy codes

Legacy codes can have many gotchas
Dead code
Redundant branches

Interactions between sections of the code may be
unknown

Can be difficult to differentiate between just bad
code, or bad code for a good reason

Nested conditionals

IDEAS

SIAM CSE17, Feb 2017 productivity

Options

Test coverings
Set of tests used to introduce an invariant
Cover a small area of the system
Ascertain correct behavior

Build the invariant, then refactor to make the code
clear

Have an on-ramp plan

IDEAS

SIAM CSE17, Feb 2017 productivity

- Code Coverage

How do we determine what other tests are
needed?

Code coverage tools
Expose parts of the code that aren’t being tested

gcov
standard utility with the GNU compiler collection suite
counts the number of times each statement is executed
lcov
a graphical front-end for gcov
available at

IDEAS

SIAM CSE17, Feb 2017 productivity

How to use gcov/lcov

Compile and link your code with --coverage flag
It’s a good idea to disable optimization

Run your test suite
Collect coverage data using gcov/Icov
Optional: generate html output using genhtml

IDEAS

SIAM CSE17, Feb 2017 productivity

A hands-on gcov tutorial

I e
0 https://amklinv.github.io/morpheus/index.html|

SIAM CSE17, Feb 2017 productivity

But | don’t use C++!

gcov also works for C and Fortran

Other tools exist for other languages
JCov for Java
Coverage.py for python
Devel::Cover for perl
profile for MATLAB
etc

IDEAS

SIAM CSE17, Feb 2017 productivity

SIAM CSE17, Feb 2017 productivity

Continuous integration (Cl): a master
branch that always works

Code changes trigger automated builds/tests on target
platforms

Builds/tests finish in a reasonable amount of time,
providing useful feedback when it’s most needed

Immensely helpful!
Requires some work, though:
A reasonably automated build system

An automated test system with significant test coverage
A set of systems on which tests will be run, and a controller

IDEAS

SIAM CSE17, Feb 2017 productivity

Continuous integration (Cl): a master

branch that always works
=R

1 Has existed for some time
-1 Adoption has been slow

Setting up and maintaining Cl systems is difficult,

labor-intensive (typically requires a dedicated staff
member)

You have to be doing a lot of things right to even
consider Cl

IDEAS
SIAM CSE17, Feb 2017

productivity

Cloud-based Cl is available as a service
on GitHub

Automated builds/tests can be triggered via pull
requests

Builds/tests can be run on cloud systems — no
server in your closet. Great use of the cloud!

Test results are reported on the pull request page
(with links to detailed logs)

Already being used successfully by scientific
computing projects, with noticeable benefits to
productivity

Not perfect, but far better than not doing Cl

IDEAS

SIAM CSE17, Feb 2017 productivity

Travis Cl is a great choice for HPC

Integrates easily with GitHub
Free for Open Source projects

Supports environments with C/C++/Fortran
compilers (GNU, Clang, Intel[?])

Linux, Mac platforms available

Relatively simple, reasonably flexible configuration
file
Documentation is sparse, but we now have working
examples

IDEAS

SIAM CSE17, Feb 2017 productivity

Travis Cl live demo

s)
0 https://github.com/amklinv/morpheus

SIAM CSE17, Feb 2017 productivity

Other resources

Software testing levels and definitions:
http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

Working Effectively with Legacy Code, Michael Feathers. The legacy software change algorithm
described in this book is very straight-forward and powerful for anyone working on a code that has
insufficient testing.

Code Complete, Steve McConnell. Excellent testing advice. His description of Structure Basis Testing
is good, and it is a simple concept: Write one test for each logic path through your code.

Organization dedicated to software testing: https://www.associationforsoftwaretesting.org/
Software Carpentry: http://katyhuff.github.io/python-testing/

Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

Papers on testing:

http://www.sciencedirect.com/science/article/pii/S0950584914001232
https://www.researchgate.net/publication/264697060_ Ongoing_verification_of_a_multiphysics_com
munity_code_ FLASH

Resources for Trilinos testing:

Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy
Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

IDEAS

SIAM CSE17, Feb 2017 productivity

