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RESULTSPEC RECIPE

Why can’t we design a process like we design a chip?
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Why not just use a 
big data approach?
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Simply put, 
it costs too 
much and 
takes too long 
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~ AVOGADRO’S NUMBER OF RECIPES

Little data 
world but big 
dimensional 
space
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What about 
physics?...
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Exploit little data with right (physics-based) model
MODEL 1 MODEL 2 MODEL 3

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann, as related by Freeman Dyson (2004)
"A meeting with Enrico Fermi,” Nature 427 (6972)
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George Box, 1976

“All models are 
wrong, some 
are useful.”
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Let’s play a “game” to find the useful models
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A virtual plasma etch process “cousin”

INCOMING RECIPE              SIMULATOR              OUTPUT TARGET OTHER PROFILES

Pressure
Plasma power1
Plasma power2

Ar flow
Gas 1
Gas 2
Gas 3

Duty cycle
Pulse frequency

Temperature 

Etch depth
Etch rate
Mask remain
Top CD
Delta CD
Bow CD
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Machine alone was no match for expert engineer

Inexperienced humans
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Process engineers

Winner: 
$105,000

Senior engineer #1
Senior engineer #2
Senior engineer #3
Junior engineer #1
Junior engineer #2
Junior engineer #3
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Computer algorithm
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$739,000 

Source: Kanarik et al, Nature, 2023
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Human learning curve consists of rough and fine tuning

Rough-tuning stage

• Baseline from 
experience 

• Domain knowledge 
and physical 
intuition are 
valuable

• Fulfilling, rapid 
progress toward 
solution

Fine-tuning stage

• Close to spec

• Physical intuition 
and domain 
knowledge less 
useful

• Frustrating, low-
productivity path to 
solution

Rough 
tuning

Fine tuning

Expert trajectory

Inflection of 
Frustration
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Human-Machine Collaboration: Transfer point “A”

Expert trajectory
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Computer last

Human first

Source: Kanarik et al, Nature, 2023

42% success rate
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Human-machine collaboration yields cost and 
time savings
  

99% success rate

Computer last

Human first

Success rate: % meeting target at lower cost than expert
Source: Kanarik et al, Nature, 2023

Expert trajectory
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More data from expert

Optimal 
transfer point

Max 
cost 
savings
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Experimental V-curve Schematic

Source: Kanarik et al, Nature, 2023

Optimal transfer leverages human investment
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Human-first, 
machine-last 
saves countless 
hours and 
millions of dollars

Hybrid approach wins

$$
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$$$

ALGORITHM

$739K

EXPERIENCED 
HUMAN ENGINEER

$105k

HF-CL 
APPROACH

$52k

The results showed 
the hybrid model 

saves time & reduced 
chip development 

costs by 50%
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Computer should partner with an experienced engineer

Source: Kanarik et al, Nature, 2023
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Algorithm behaves differently than process engineer

1148.6 68.5 4026 90.7 33.9 20.9 220.0 50.9
1165.2 66.5 3594 198.7 33.3 22.3 231.0 58.4
1166.8 67.1 3480 167.6 32.6 21.3 226.1 58.2
1149.3 68.3 3842 109.2 30.7 17.9 252.7 58.3
1160.1 60.5 3110 181.0 27.2 17.8 204.5 58.1
1158.0 60.0 3103 156.8 27.0 17.8 202.9 58.0
1143.9 68.6 3550 90.1 33.4 16.1 180.0 59.5
1137.1 67.3 3715 96.7 34.1 17.4 180.6 59.5
1160.5 67.7 3830 169.9 30.2 18.0 199.4 57.0
1170.7 67.0 3728 196.3 29.2 17.5 195.7 56.3
1161.6 67.2 3687 181.9 30.2 17.7 194.5 56.0
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Human first

Computer last

Source: Kanarik et al., Nature, 2023
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There is high value 
learning from virtual 
worlds that are not 
precisely predictive
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• Build cost: >$1,000,000 to 
purchase reactor for the 
laboratory

Per recipe:
• Cost per recipe: $1000
• Time per recipe: half day

• Build cost: $100,000 
person-hours to program 
HARC application into 
SEM3D

Per recipe:
• Cost per recipe*: $0.11
• Time per recipe: 8 min

Real process in lab Simulation of process

• Build cost: Used $30,000 of data 
(240,533 simulations) to train the 
neutral network 

Per recipe:
• Cost*: $3e-07
• Time: 0.0013 s

Emulator (model of simulator)

Real vs. virtual processes : Cost and time comparison

*Computation cost: $0.8/hr for one f16 instance on HPC.
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Virtual Process Development
Transform process development through digitalization, automation, simulation & data analysis

• Process Development is not one monolithic workflow.  
It is many different paths through a variety of different 
activities.  Catering to these varied workflows requires 
a holistic strategy.

• The activities largely reside in three disciplines, with 
specific requirements, and must be connected through 
enterprise-scale storage of experimental process data.

• Modernizing and automating physical experimental 
activities in the lab is key to delivering the contextual 
data to the data store

• Image analysis and flexible platforms for data science, 
machine learning and advanced analytics are critical 
for data engineering.

• Connecting platforms and systems to create efficient, 
friction-free workflows = Virtual Process Development

Experimental 
Planning & 
Execution

Data 
Engineering

Data Analysis & 
Experimental 
Design

Assign 
recipes/tools 
to samples

Choose 
metrology to 
use

Execute  
experiment 
in the lab

Execute 
metrology 
(Lab/ 
external)

Assemble 
Starting 
Materials 

Configure 
Lab 
Hardware

Link the 
data with 
context

Extract 
measurements 
from images

Transformation 
of Sensor Data

Data 
cleaning/ 
curation

Data entry 
(manual/ 
semi-auto)

Advanced/ 
Statistical 
Analysis

Model 
Creation

Model 
Calibration

Data 
visualization

Query/ 
filter 
data

Derived 
measurements

Create 
Experimental 
Design

Use 
models to 
predict

Use 
models to 
explore

Create 
Process 
Strategy 

Enterprise  
Lab Data 
Storage
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Real-time profile metrology for 100x cycle time reduction

Real-time metrology offers 100x cycle time reduction

TEM 
prep TEM collection Image processing

0.5 hr 12 - 120 hr 1 – 24 hr

Etch or 
dep Data 

analysis
Preparation

Metrology for high aspect ratio solution development costly, time-consuming, and destructive

1 cycle
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