Big data, little data, and ':
virtual twins:

Accelerating process development for
semiconductor device fabrication
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Why can’t we design a process like we design a chip?
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Simply put,
1t costs too
much and

takes too long
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~ AVOGADRO’S NUMBER OF RECIPES

Little data
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What about
physics?...



Exploit little data with right (physics-based) model

MODEL 1 MODEL 2 MODEL 3

o 1

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann, as related by Freeman Dyson (2004)
"A meeting with Enrico Fermi,” Nature 427 (6972)
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“All models are
wrong, some
are useful.”

George Box, 1976
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Let’s play a “game” to find the useful models
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A virtual plasma etch process “cousin”

INCOMING RECIPE > SIMULATOR > OUTPUT TARGET OTHER PROFILES

(Gas flows
Pressure

P00 n Plasma power1 Pressure

Plasma power2 Etch depth
Ar flow Etch rate
Gas 1 Mask remain
Gas 2 Top CD
Gas 3 Delta CD

Oxide Duty cycle Bow CD
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Temperature
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Machine alone was no match for expert engineer
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Human learning curve consists of rough and fine tuning

Expert trajectory
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 Baseline from

» Close to spec

experience
* Physical intuition
and domain
Domain knowledge knowledge less
and physical useful
intuition are
valuable » Frustrating, low-
productivity path to
Fulfilling, rapid solution

progress toward
solution




Human-Machine Collaboration: Transfer point “A”
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Human-machine collaboration yields cost and
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Optimal transfer leverages human investment

Experimental V-curve Schematic
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COST-TO-TARGET

ALGORITHM

$739K

AAAAAAAAAAA

The results showed
the hybrid model

saves time & reduced

chip development
costs by 50%

EXPERIENCED HF-CL
HUMAN ENGINEER APPROACH
$105k $52k

Hybrid approach wins

Human-first,
machine-last
saves countless
hours and
millions of dollars



Computer should partner with an experienced engineer

Cost-to-target ($1,000)
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Algorithm behaves differently than process engineer

Progress Tracker (A.U.)
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There 1s high value
learning from virtual
worlds that are not
precisely predictive



Real vs. virtual processes : Cost and time comparison

Real process in lab

e Build cost: >$1,000,000 to
purchase reactor for the
laboratory

Per recipe:
* Cost per recipe: $1000
* Time per recipe: half day

Simulation of process

e Build cost: $100,000
person-hours to program

HARC application into
SEM3D

Per recipe:
* Cost per recipe*: $0.11

* Time per recipe: 8 min

Emulator (model of simulator)

* Build cost: Used $30,000 of data

(240,533 simulations) to train the
neutral network

Per recipe:
 Cost*: $3e-07
* Time: 0.0013 s

A LAM RESEARCH




Virtual Process Development

Transform process development through digitalization, automation, simulation & data analysis

Assemble

Ercate Sy Assign * Process Development is not one monolithic workflow.
Experimental
Create berien Materials recipes/tools c c . c
process to samples It is many different paths through a variety of different
modets to oo o activities. Catering to these varied workflows requires
xplor o arc
T use a holistic strategy.
models to
prediCt : . : - - . - " . " . -
Model Data Analysis & Experimental g « The activities largely reside in three disciplines, with
i —— Experimental Planning &

B Execution Hardware specific requirements, and must be connected through
Execute enterprise-scale storage of experimental process data.

experiment
in the lab

Model
Creation

Advanced/
Statistical

* Modernizing and automating physical experimental

et S activities in the lab is key to delivering the contextual
L
e ization Lo data to the data store
external)
perved . « Image analysis and flexible platforms for data science,
e Link the machine learning and advanced analytics are critical
data with c .
et Data context for data engineering.

Query/ Engineering
filter
data

Extract « Connecting platforms and systems to create efficient,

measurements

from images friction-free workflows = Virtual Process Development

Data

cleaning/

curation Transformation
of Sensor Data
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Real-time profile metrology for 100x cycle time reduction

Metrology for high aspect ratio solution development costly, time-consuming, and destructive

Etch
Preparation dtc of Data

ep .
0.5 hr 12 -120 hr 1-24hr analysis

TEM

orep TEM Image processing

Real-time metrology offers
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