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-A reformulation of dynamical systems theory in terms of evolution of observables.
-Koopman and von Neumann used it to study measure-preserving systems.

-Last 20 years; studies of dissipative systems; data-driven methodologies.
-Spectral objects associated with a class of linear, infinite-dimensional, non self-
adjoint operators help unravel the state-space geometry and enable model

reduction and control in high-dimensional systems.

-Relationship to data analysis is direct: akin to stochastic process theory
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SREINWEINNIS  Operator theory: history and setup

Observables on phase spaceM  f: M — C

Koopman operator:

Uf(r) = foT(x); T:M— M
Uf(x) = f(S'z); S':M — M foreverytcR

B.O. Koopman “Hamiltonian Systems and Transformations in Hilbert Space”, PNAS (1931)
Cf. Carleman (1931), Koopman-vonNeumann (1932)

Vector field case: x = F(x)
t
Generator equation af(X’ ) — F(X) . Vf(X, t).
ot
Eigenfunction equation F(X) y VQZS(X) — )\qb(X)
Ulp(x) = eMo(x)

Example:
i={z,H} = H =0,

The Hamiltonian is an eigenfunction of the Koopman operator at eigenvalue 0.



(,\, oW SIVINES  Algebraic Properties of Eigenfunctions

Proposition Let U? be the Koopman operator family evolving observables on
the state space M. Assume F is a subset of all C-valued functions on a set M
that

1. Forms a vector space which is closed under pointwise products of functions,
and

2. Contains the constant function whose value is equal to 1.

Then, the set of eigenfunctions forms an Abelian monoid under pointwise prod-
ucts of functions (i.e. F has identity, associativity, closedness and commutativ-
ity). In particular, if ¢1,¢o € F are eigenfunctions of U with eigenvalues 4
and (o, then ¢q¢s is an eigenfunction of U with eigenvalue 81 + (.
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FIG. 1. (Color online) Single-function plots of time averages for the standard map equation (7) (left) and the corresponding phase space portraits (right) done
as 100 iterations of 11X 11 random trajectories picked from [0, 1]? for the function f=cos(2my). Top row: £=0, middle: £=0.09, bottom: £=0.18. The grid
of 800 800 initial points was used, and the dynamics was run for f,,=30 000 iterations.

2 invariants...

The eigenspace at 1 of the Koopman operator contains all L ] ] )
Left: time averages=eigenfunctions at 1.

There are many! Right: state-space (phase space).



() UCSANTA BARBARA Invariants and the ergodic partition

Theorem 1 Let M be a compact metric space ¥ = z4+y+esin2rx)  [mod 1]
and T : M — M a C",r > 1, diffeomorphism . y' = y+esin(2rr) [mod 1]
Assume there exist a complete system of func- TN T TET
tions {f;}, f; € C(M), i.e. finite linear combina- NN L e
tions of f; are dense in C(M). The ergodic par- b g B s s o
tition of a C",r s 1 diffeomorphism T : M — M R T S
on M is

=V ¢ e

i€N Ry |

ffz \/ffj — {B < B|B — Ca M Cb,ca < gfi,c'b < '?f.,',':

038

07

= cos(2my)
fr= cos(Zrz)cos(Qﬂy)
f=sin(4mx) sin(4my)
f4= sin(107x) sin(107y)

0.6

> 05




() UCSANTA BARBARA Why is the Hamiltonian special?

Theorem 1 Let v(x),x € M be a smooth vector field on a two-dimensional
manifold M, preserving an invariant measure p|p(x) > 0. Then there exists a
(unique) smooth eigenfunction H of the Koopman operator that in local coordi-
nates q,p satisfies

. _ 0H(q,p)

g o
. _ _0H(q,p)
p = 9

where () = d/ds(), and ds = pdt.

Remark 1 FEverything can be ported to coordinate-free setting with few assump-
tions on the underlying space. E.q. compact contractible manifold will do.



() UCSANTA BARBARA Why is the Hamiltonian special?
|

Proof:

1) (from Koopman generator) The equation for an invariant (eigenfunction at
0) G satisfies

0G  .0G
qa—q + Pa—p =0, (1)
which is satisfied if and only if
— oG
¢ = fla,p) o (2)
: oG

where f(p,q) is a smooth function.
The “only if” part comes from geometrical consideration: the vector (¢, p) is
perpendicular to the normal to the surface G(q,p) = ¢ at every point, and thus

oG G

(q.'ap):f(%p)( 8])’ dq ) (4)




() UCSANTA BARBARA Why is the Hamiltonian special?

Proof:
2) (from Perron-Frobenius generator) Now we assume that the system has an
invariant measure p characterized by a smooth density p such that du = pdgAdp.
The equation that assures the preservation of u reads

d(gp)  Op)
o + o — 0.

and thus - .
o( 3—pP) _ o( a—q/))

dq op
The above is also the equation for eigenfunction p at eigenvalue 0 of the Perron-

Frobenius evolution P?.
Now, if p is an eigenfunction of the Perron-Frobenius evolution, we get

= 0.

ofp%y) OIp52) afpaG 0fpdG

— = 0.
dq op dq Op  Op 0Oq

This implies fp is also an invariant of the evolution, i.e., a function of G, fp =
F(G), leading to

B F(G) oG
q = Ta_p’ (1)
p = DA% 8



() UCSANTA BARBARA Why is the Hamiltonian special?

Proof:

3) (from rescaling of time) This implies that there is a function H(G) with
dH/dG = F(G) such that

= 1

q P (1)
10H

) = . 2

P 0 (2)

and thus the underlying system is Hamiltonian, with the Hamiltonian function
G. Note that p = 1 leads to the canonical Hamiltonian structure, but so does
the change of time variable ds = pdt.

e (Classically, the existence of the hamiltonian H is proven using the struc-
ture of Newtonian dynamics.

e Remarkably, the structure of the dynamics encoded in canonical Hamilto-
nian equations is forced is here derived by pure search for an “equilibrium”
measure p and an invariant, G.

e In other words, the assumptions on the Koopman and Perron-Frobenius
operator spectra - namely that there exists a non-trivial smooth invariant
observable, and a strictly positive smooth invariant measure are enough
to guarantee the Hamiltonian form of the equations of motion.
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Kevrekidis et al:

Approximating H with ANNs

* Asimilar approximation of H (given only its derivatives) can be done with an Artificial Neural Network
(and its automatically constructed derivative)

* The input to the network are the coordinates (q,p), the output is H(q,p)

Pendulum Hamiltonian via ANN

* To train the network, we use the data D = {(q, p, 4, )} and the loss function f

output: 1 units + bias

16 x 1 weighl‘sA

hidden_1: tanh(16 units + bias)

16x 16 weights‘

hidden_0: tanh(16 units + bias)

2x 16 weighl‘é

input: 2 values

4
Fw; 4:p.4,;p) = Y Akf
k=1

h

0H, \° .
< ap —Q) f2

(Hw(go,20) — Ho)* fa

Actual Hamiltonian

sample data batch

0 5

10

10

15



(,\, WISV Spectral Expansion for Composition Operators

x = F(x), xe M, (1)
F:M — R" (2)
g:IxM — R™zel (3)
g; € L* (M), ¥V je{0,..,n} (4)
Utg(Z,X) - U;g(Z,X)+Uﬁg(Z,X)
k
)+ Y et ) /Mg(z,x)qu(x)du(x)
+ f ) exp(i2rat)dE(a)g(z, X)
k o0
— g'(z) + Zexp()\jt)qﬁj(x)sj(z) —I—/_ exp(i2rat)dFE(a)(g(z, x)),

j=1

I.M. Nonlinear Dynamics, 2005
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Feceivad uy 19, 1925

QUANTUM-THEORETICAL RE-INTERPRETATION
OF KINEMATIC AND MECHANICAL RELATIONS

Classical x?

Quantum x?

12

Heisenberg's Theory as Koopman Theory

Position x:

+oo
x(n, b = ¥ Q,I“(n) elo(n)at

+ o0
W. HEISENBERG x(n, &) = [ Ux(n) elo@atdy,

+o0
Bs(n) elo@ot — 3 A, Wp_y elom (a+5-0)t

=00

+ oo
— f mamﬂ—x eiw(n)(u-&-ﬁ-—a)tda’

-—0C

-+ 00

B(n,n — p) ele =0t = 3, A(n, n — «)A(n — «, n — B) ele(n, n-p)i

or

—oQ

+ 00
= [ UAn,n— ) UA(n — a, n — ) elon. 1-6)tde,

—o0




(\, RIS INVIVYY  Heisenberg's Theory as Koopman Theory

Namely, Heisenberg observed that one can expand position of a non-harmonic

oscillator as
= E Tnent. w, = nw, (1)

nez
where w = dH /dI. Asking to represent z2(¢) using this expression, we obtain
= E TremZm €t Wy = nw,
meZ

and this did not coincide with experimental observations that suggested dynamic
frequencies wy,,, that combine as

Wnm = Wnk + Wkm-

This led Heisenberg to conclude that, for a quantum system, one can repre-
sent position (or for that matter, any other observable) () as

Z xnmeiw’",'ln.t (2)

n,mez

and thus

:2,2 E ( E mnkka) TWnmt

n.me”Z \keZ



(\, W RIVEIVES  Heisenberg's Theory as Koopman Theory

T = E W Trme“nm?t (1)
n,mez
In other words,
Tnm = 1WnmTnm- (2)

Tnm 18 Koopman

The quantum frequencies w,,,, were observed to satisfy . .
operator eigenfunction!

1
Wnm = f_i(En - Em), (3)

for some set of quantities Ej (physically, energies of the system).
Let Zpm(t) = zpme™@rmt. We get

Enm(t) = i—(Ep — Ep)Tpm(t), (4)

S| =

and, defining the matrix & by Z,., = Tpm(t) to obtain
ih = &, E], (5)

where F = E,6nm is a diagonal matrix with energies E}) on the diagonal, and
(A, B] = AB — BA for matrices A and B.
Postulate using correspondence principle:

E =p?/2+ V(&) (6)

Noting that a new variable p (the quantum analogue of momentum) entered in
the energy relationship, we can derive, analogously

ihp = [p, E]. (7)



CRINIIVEINIY Heisenberg’s Theory as Koopman Theory

It is interesting to note the little known Pauli identity h

o0
Lnm :/ fw-n,(fl?)@bm(ff)dff
—00
Which implies - using the interpretation of

:’i: — 5 :Bmlnelw'm nt

m,n

as the Koopman Mode Decomposition - that the Koopman eigenfunctions in
quantum mechanics are precisely

Gnm = YnVm.

For quantum harmonic oscillator, the energy levels read
oniia energy Eneray E, = ﬁ(% + nw) = hw(n + 1/2), (1)
%kxz ? Transition
n=4\\ ?h?ergy/ 1 and thus, by Bohr’s rule, the associated frequencies are
n=3\ E f / Ey=(n+3)ho
n=2 : 1
n=1_o /. Wnom = %(En — FEp) =w(n —m). (2)
I:t;muclea; separatign- : X
P e Consistent with the spectrum of the Koopman operator associated
dﬁ. with the classical harmonic oscillator, restricted to orbits with the
x=0 re:resentslhe equilibrium discrete Cnergy levels.
separation between the nuclei.
e Indicates that the harmonic oscillator frequencies are the consequence
of a nonlinear observation on the linear underlying harmonic oscillator
process.




ERINWIVEINIY Dirac’s Raising and Lowering Operator

Dirac’s creation an annihilation (equivalently, raising and lowering) op-
erators for the harmonic oscillator,

1
iy = —=—(ip+ mwq) (1)
Potential energy 2hmw
of form Energy X 1 - A
i = ——(ip+mwj) (2)

Liex® i .
Tkx \ 5 Transion V2hmw
n=4 T 7
1 7. 3
n=3\\ : tth) //En=(n+-;-)hm ( )

n=2 T

. are the quantized version of eigenfunctions of the classical harmonic oscil-
=0 Eo = 2h0 lator of frequency w associated with Koopman eigenvalues +iw: Let

Internuclear separation X

e q = p/ma

{.@. p = —mw?q. (4)

x=0 represents the equilibrium
separation between the nuclei.

In fact, multiplication operators

) and
{/+f = ¢1f (1) S —
L~ f = ¢f (2) ay = mﬁbl =4/ ﬁ% (6)

are the raising and lowering operators for the Koopman op-
erator of the classical harmonic oscillator (and more gener-
ally, multiplication by principal eigenfunctions are ladder . 1 P

operators for classical Koopman operators. o1 5 (q+ Zm—w) (7)

where qAﬁl is the quantized operator




(}\) UC SANTA BARBARA Densities on Observables

Let M =R and (z,t) € R = R x R. Let v be a smooth vector field on R.
The wavefunction p (we will call it the true wavefunction or TW) satisfies

dp  Opv

e == ], 1
ot " oz L)
Let the observable f : R — C be defined by

f - quzya (2)

where Y (z,t) is smooth (at least in C?). This implies that the observable
wavefunction (OW) v defined by
P

W = z %}_;_,g?:’?f , (3)

is the density of a complex measure of the observable f = ¢ corresponding
with the TW p, since
ﬁ — idY 1Y

— ot 4
dx @:;Et (4)




g,\) SN e Densities on Observables: A Schrodinger-Like Formalism

Let v be a smooth vector field on R. The wavefunction p (we will call it the
true wavefunction or TW) satisfies

dp  Opv
e et  § 1
5 " om (1)

Let the observable f : R — C be defined by
f - quzya (2)

where Y (z,t) is smooth (at least in C?). This implies that the observable
wavefunction (OW) v defined by

. p :

Y = 3

T (3)
-3y

is the density of a complex measure of the observable f = ¢ corresponding
with the TW p, since _
df 0Y
e e (4)
dx ox |




() UCSANTA BARBARA A Dirac-Like Equation

After some calculation, we get

Yy = =y + (_va: EYO&”E — Tx — Z(Y;ﬁ -+ UYa:))

This is the Dirac-like equation that governs the observable wavefunction evolu-
tion.
If the observable is real, with Y = 1K, we get

K,
by = —viy + (—vx + K, — Ki(Km _K2) - t) |
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Discovery of the fundamental laws of classical physics (e.g. existence of
differential equations in Hamiltonian form) is enabled by assumptions on
the eigenspace at 0 of the Koopman and Perron-Frobenius operators.

Heisenberg’s discovery of quantum mechanics can be couched in the Koop-
man Mode Decomposition language. This leads to the conclusion that
Quantum Dynamics is not linear.

Spectrum of the quantum Harmonic Oscillator is consistent with the spec-
trum of the Koopman operator of the classical Harmonic Oscillator.

Dirac’s raising and lowering operators can be motivated by their classical
versions

Equation for a wavefunction of an observable on a dynamical system yields
a Dirac-Schrodinger type equation.
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This indicates the wave function in quantum mechanics represents “knowl-
edge”

Wilczek in his online note Notes on Koopman von Neumann Mechanics, and
a Step Beyond‘ says

“In the classical theory, at least, it seems hard to avoid the implication that
the wave function re ects our knowledge of the system. More generally, it seems
that controversies over the interpretation of quantum theory can be illuminated
by comparing with this parallel formulation of classical physics.”



