

THIS EDUCATIONAL WEBINAR IS MADE
POSSIBLE THROUGH AN UNRESTRICTED
GRANT FROM BIOMÉRIEUX.

Rapid antibiotic susceptibility testing: motivation & methods

American Society for Microbiology Webinar
6 November 2025

Daniel D. Rhoads, MD, D(ABMM)

The Belinda Yen-Lieberman, PhD, and James M. Lieberman, MD,
Endowed Chair in Clinical Microbiology
Cleveland Clinic Main Campus

Disclosures

Research Contractor:

Abbott, Altona, BD, bioMerieux, Cepheid, Luminex, Meridian, Pattern Biosciences, Qiagen, Q-Linea, Roche, Selux, Thermo Fisher.

Board Member:

Next Gen Diagnostics, Renascent Diagnostics.

Objectives

- Describe the potential clinical benefits of rapid antimicrobial susceptibility testing
- Recognize the diagnostic devices that currently on the market in the U.S. for rapid antimicrobial susceptibility testing.

What is the goal?

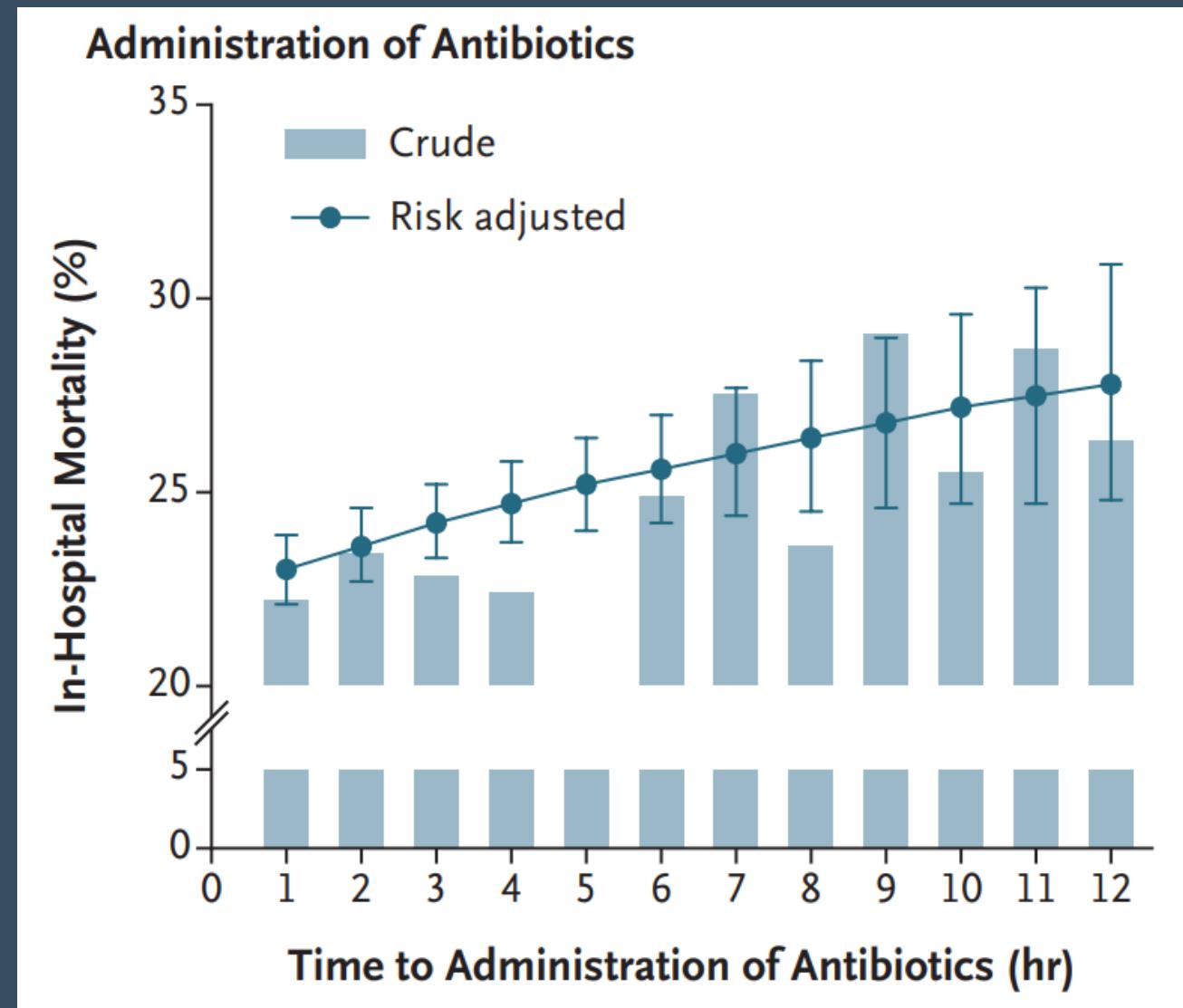
Provide timely, accurate, and clinically actionable findings

What is the goal?

$$\text{VALUE} = \frac{\text{BENEFITS}}{\text{COST}}$$

<https://www.designerpeople.com/blog/value-proposition-top-marketing-strategy/>

What is the goal?



<https://medium.com/swlh/good-fast-or-cheap-pick-2-to-grow-your-business-7b37bf928a1>

Time matters in sepsis & bacteremia

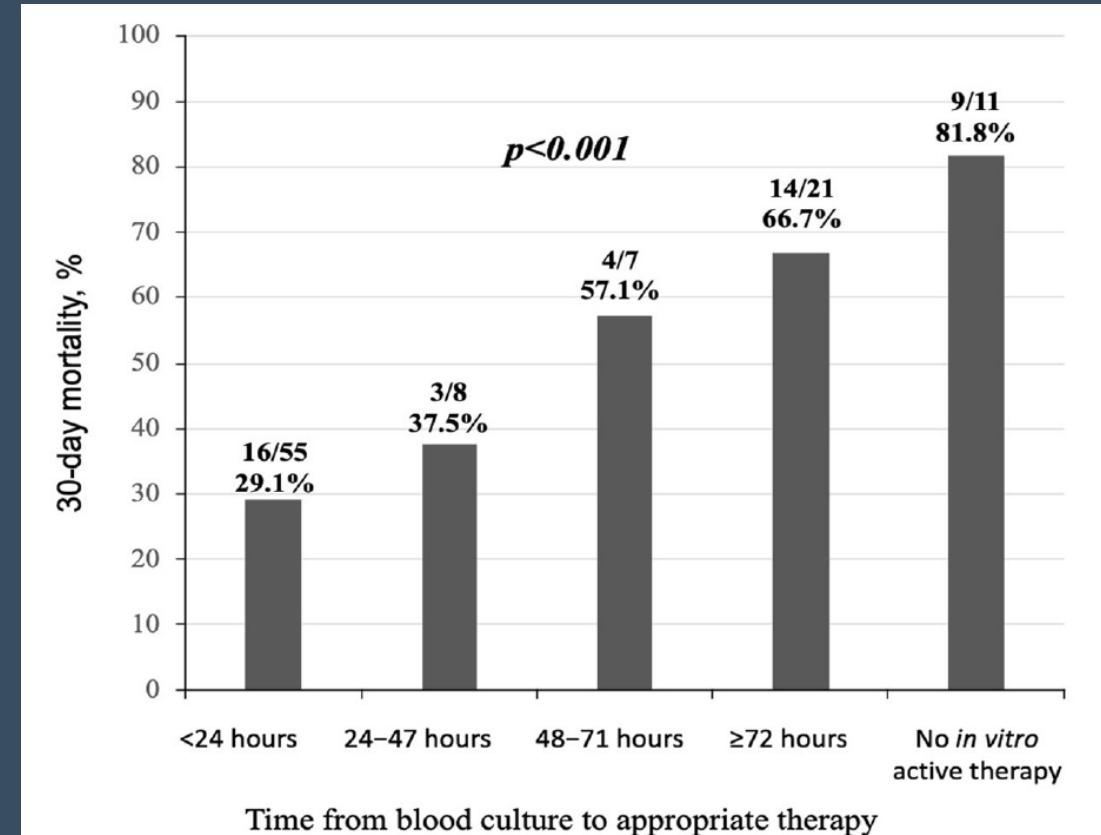
Every hour counts.

Quickly recognizing sepsis and treating bacteremia can improve survival.

Time matters in sepsis & bacteremia

Using the **RIGHT** antibiotic is important for survival.
Antibiotic resistance kills.

TABLE 2. Variables Independently Associated With All-Cause Hospital Mortality


Variables	OR	95% CI	p
Age ^a	1.3	1.1–1.5	0.009
Acute Physiology and Chronic Health Evaluation score ^a	1.7	1.4–2.1	< 0.001
Duration of hospitalization prior to bacteremia ^a	1.3	1.1–1.6	0.002
Septic shock	2.3	1.9–2.8	< 0.001
Mechanical ventilation	1.5	1.2–1.8	< 0.001
Inappropriate antibiotics	3.4	2.8–4.1	< 0.001
Prior hospitalization ^b	1.4	1.2–1.6	< 0.001

OR = odds ratio.

^aAge, Acute Physiology and Chronic Health Evaluation score, and duration of hospitalization prior to bacteremia in days used as binary variables: ≤ 61, ≤ 16, ≤ 2 d.

^bWithin 90 d.

Goodness-of-fit by the Hosmer-Lemeshow test = 0.930.

DOI: 10.1186/s13054-020-2742-9

Crit Care. 2020 Jan 30;24(1):29.

Time matters in sepsis & bacteremia

Post-analytical action is an important component of success:

“Rapid microarray testing on blood cultures combined with active antimicrobial stewardship intervention was associated with decreased time to antimicrobial switch, time to effective therapy, and hospital length of stay.”

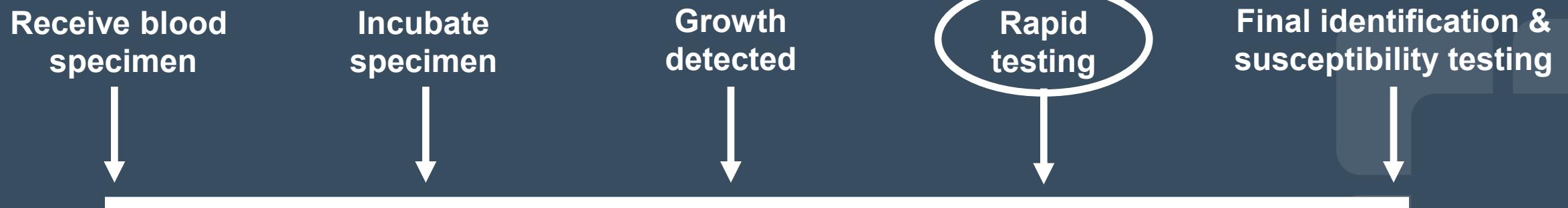
Rivard *et al.*

DOI: 10.1007/s10096-017-3008-6

Eur J Clin Microbiol Infect Dis. 2017 Oct;36(10):1879-1887.

“Integrating rapid diagnostics with antimicrobial stewardship improved time to optimal antibiotic therapy and effective antibiotic therapy. [...] Mortality among patients during the intervention period was lower [...]. Mean hospital costs for each inpatient survivor were reduced \$26,298.”

Perez *et al.*


DOI: 10.1016/j.jinf.2014.05.005

J Infect. 2014 Sep;69(3):216-25.

Time matters in sepsis & bacteremia

Lab testing:

Rapid testing for blood cultures

- Molecular detection of microbes & resistance genes
- Early MALDI
- Rapid antimicrobial susceptibility testing (AST)

In the beginning...

THE AMERICAN JOURNAL OF CLINICAL PATHOLOGY
Copyright © 1966 by The Williams & Wilkins Co.
Printed in U.S.A.
Vol. 45, No. 4

Reprinted from TECHNICAL BULLETIN OF THE
REGISTRY OF MEDICAL TECHNOLOGISTS
Vol. 36, No. 3, 1966

TECHNICAL SECTION

ANTIBIOTIC SUSCEPTIBILITY TESTING BY A STANDARDIZED SINGLE DISK METHOD

A. W. BAUER, M.D., W. M. M. KIRBY, M.D., J. C. SHERRIS, M.D., AND
M. TURCK, M.D.

*Departments of Microbiology and Medicine, University of Washington, School of Medicine,
Seattle, Washington 98105*

Most clinical microbiologic laboratories in this country now use the paper disk method for determining susceptibility of bacteria to antibiotics and chemotherapeutic agents. A number of modifications of the test are employed. When this type of test was first developed, only 1 disk was used for each agent to be tested,^{7, 10} but subsequently it became common practice to use 2 or more disks of different potency and to judge susceptibility on the basis of the presence or absence of growth around the disks. Our approach has been to continue to develop a single disk method based on measurement of sizes of zones. We believe that this is rational in theory and that it correlates better with the results of dilution technics.

A number of reports on the technical details, experimental basis, and interpretative standards of the single disk method have been published,^{1, 4-6, 12} and recently some of the theoretical aspects have been reviewed in more detail.^{2, 3, 11} The purpose of the present communication is to consolidate and update previous descriptions of the method and provide a concise outline for its performance and interpretation.

METHOD

Rapidly Growing Pathogens Such as *Staphylococci* and *Enterobacteriaceae*

A few colonies (3 to 10) of the organism to be tested are picked with a wire loop from the original culture plate and introduced into a test tube containing 4 ml. of tryptose phosphate or trypticase soy broth. These tubes are then incubated for 2 to 5 hr., to produce a bacterial suspension of moderate cloudiness. The suspension is then diluted, if necessary, with water or saline solution to a density visually equivalent to that of a standard prepared by adding 0.5 ml. of 1 per cent BaCl₂ to 99.5 ml. of 1 per cent H₂SO₄ (0.36 N). An alternative procedure is to dilute broth cultures overnight to the density of the opacity standard (10- to 100-fold). For the sensitivity plates, large (15-cm.) Petri dishes are used with Mueller-Hinton agar (5 to 6 mm. in depth). Plates are dried for about 30 min. before inoculation and are used within 4 days of preparation.

The bacterial broth suspension is streaked evenly in 3 planes onto the surface medium with a cotton swab (not a wire loop or glass rod). Surplus suspension is removed from the swab by being rotated against the side of the tube before the plates are sealed. After the inoculum has dried (3 to 5 min.), the disks are placed on the agar with forceps or a single disk applicator and pressed down to ensure contact. Plates are incubated immediately, or within 1 hr. The large Petri dishes are spacious enough to accommodate about 9 disks in a ring, and 3 or 4 more in the center, advantageous to place antibiotics which well in the outer circle and disks which produce smaller inhibition zones, such as tetracycline, penicillin, and polymyxin-B, in the center of the plate.

After overnight incubation, the zones are measured with a ruler on the undersurface of the Petri dish or with calipers near the surface. A reading of 6 mm. indicates a zone. The end point is taken as complete inhibition of growth as determined by the naked eye, except in the case of *Neisseria* mides, where organisms grow through 2 generations before inhibition takes effect.

Received, August 17, 1965.

493

7 years later (& 50 years ago)...

THE AMERICAN JOURNAL OF CLINICAL PATHOLOGY
Copyright © 1966 by The Williams & Wilkins Co.
Vol. 45, No. 4
Printed in U.S.A.

Reprinted from TECHNICAL BULLETIN OF THE
REGISTRY OF MEDICAL TECHNOLOGISTS
Vol. 36, No. 3, 1966

TECHNICAL SECTION

ANTIBIOTIC SUSCEPTIBILITY TESTING BY A STANDARDIZED SINGLE DISK METHOD

A. W. BAUER, M.D., W. M. M. KIRBY, M.D., J. C. SHERRIS, M.D., AND
M. TURCK, M.D.

Departments of Microbiology and Medicine, University of Washington, School of Medicine,
Seattle, Washington 98105

Most clinical microbiologic laboratories in this country now use the paper disk method for determining susceptibility of bacteria to antibiotics and chemotherapeutic agents. A number of modifications of the test are employed. When this type of test was first developed, only 1 disk was used for each agent to be tested^{7, 10} but subsequently it became common practice to use 2 or more disks of different potency and to judge susceptibility on the basis of the presence or absence of growth around the disks. Our approach has been to continue to develop a single disk method based on measurement of sizes of zones. We believe that this is rational in theory and that it correlates better with the results of dilution technics.

A number of reports on the technical details, experimental basis, and interpretative standards of the single disk method have been published,^{1, 4-6, 12} and recently some of the theoretical aspects have been reviewed in more detail.^{2, 3, 11} The purpose of the present communication is to consolidate and update previous descriptions of the method and provide a concise outline for its performance and interpretation.

METHOD

Rapidly Growing Pathogens Such as *Staphylococci* and *Enterobacteriaceae*

A few colonies (3 to 10) of the organism to be tested are picked with a wire loop from the original culture plate and introduced into a test tube containing 4 ml. of tryptose phosphate or trypticase soy broth. These tubes are then incubated for 2 to 5 hr., to produce a bacterial suspension of moderate cloudiness. The suspension is then diluted, if

Received, August 17, 1965.

493

necessary, with water or saline solution to a density visually equivalent to that of a standard prepared by adding 0.5 ml. of 1 per cent BaCl₂ to 99.5 ml. of 1 per cent H₂SO₄ (0.36 N). An alternative procedure is to dilute broth cultures overnight to the density of the opacity standard (10- to 100-fold). For the sensitivity plates, large (15-cm.) Petri dishes are used with Mueller-Hinton agar (5 to 6 mm. in depth). Plates are dried for about 30 min. before inoculation and are used within 4 days of preparation.

The bacterial broth suspension is streaked evenly in 3 planes onto the surface of the medium with a cotton swab (not a wire loop or glass rod). Surplus suspension is removed from the swab by being rotated against the side of the tube before the plates are seeded. After the inoculum has dried (3 to 5 min.), the disks are placed on the agar with flamed forceps or a single disk applicator and gently pressed down to ensure contact. Plates are incubated immediately, or within 30 min. The large Petri dishes are spacious enough to accommodate about 9 disks in an outer ring, and 3 or 4 more in the center. It is advantageous to place antibiotics which diffuse well in the outer circle and disks which produce smaller inhibition zones, such as vancomycin and polymyxin-B, in the central area of the plate.

After overnight incubation, the zone diameters (including the 6-mm. disk) are measured with a ruler on the undersurfaces of the Petri dish or with calipers near the agar surface. A reading of 6 mm. indicates no zone. The end point is taken as complete inhibition of growth as determined by the naked eye, except in the case of sulfonamides, where organisms grow through several generations before inhibition takes effect.

PMID: 5325707

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Mar. 1973, p. 418-424
Copyright © 1973 American Society for Microbiology

Vol. 17, No. 3
Printed in U.S.A.

Rapid, Modified Kirby-Bauer Susceptibility Test with Single, High-Concentration Antimicrobial Disks

V. JAMES BOYLE, MARILYN E. FANCHER, AND RICHARD W. ROSS, JR.
Departments of Microbiology and Biometrics, Sterling-Winthrop Research Institute,
Rensselaer, New York 12144

Received for publication 13 November 1972

A rapid (6-7 hr), modified Kirby-Bauer disk-susceptibility method, by which derivatives of tetrazolium dyes are used to enhance delineation between areas of growth and zones of inhibition, has been developed. Inoculated petri plates, prepared by the Kirby-Bauer method, were sprayed, after 6 to 7 hr of incubation (37°C), with aqueous solutions of MTT-tetrazolium or INT-tetrazolium resulting in readily detectable zones of inhibition. Excellent correlation was obtained between the modified test and the standard Kirby-Bauer test when challenged with a variety of gram-negative bacteria and *Staphylococcus aureus* strains. Additionally, the modified test has demonstrated reproducibility comparable to the standard Kirby-Bauer test. It is demonstrated that the modified test is applicable to susceptibility determinations with representative, commercially available antimicrobial disks. This applicability indicates that the modified method could provide rapid in vitro guidelines for in vivo therapy.

The standard Kirby-Bauer in vitro disk-susceptibility method, when performed and evaluated correctly, has been extremely useful as a guide in choosing the antimicrobial agent best suited for in vivo therapy of infections due to gram-negative bacteria and staphylococci.^{1, 2} Recently, the Food and Drug Administration has recommended the Kirby-Bauer technique as a standardized procedure for the determination of antimicrobial disk susceptibilities³. Recommended specifications have included standardization of the size and method of inoculation, standardization of the type and depth of agar, and utilization of specific types of petri plates.

General acceptance of the in vitro disk-susceptibility method has been aided by its simplicity and rapidity^{1, 2, 4}. However, the prolonged incubation interval required (18-20 hr) between the determination of susceptibility in vitro and the utilization of the antimicrobial agent in vivo has remained a distinct disadvantage. Recently, our laboratory has been examining the ability of various tetrazolium dyes to enhance the distinction between areas of bacterial growth and zones of inhibition produced by antimicrobial agents.

In the course of these studies, we considered the potential application of this technique to in vitro disk susceptibility determinations. With this in mind, we examined the susceptibilities of a number of gram-negative bacteria and staphylococci by a rapid, modified Kirby-Bauer disk-susceptibility method. This report demonstrates that the bacterial susceptibilities determined by the modified method correlate extremely well with those obtained by the standard Kirby-Bauer method. The potential utilization of the modified method as a guideline for rapid in vivo therapy is discussed.

MATERIALS AND METHODS

Organisms. The organisms employed in the present study were clinical isolates obtained from the Albany Medical Center, Albany, N.Y., and the Veterans' Administration Hospital, Albany, N.Y. Some of the *Escherichia coli* and *erratia marcescens* strains were obtained from the Sterling-Winthrop Research Institute Culture Collection.

Disk-susceptibility tests. Disk susceptibilities were determined by the Kirby-Bauer technique as recommended by the Food and Drug Administration.^{1, 2} Upon repeated testing, we have found that dilution of the overnight culture under test to an optical density of 0.10 (650 nm), with a Spectronic 20 spectrophotometer (Bausch & Lomb) is equivalent to the barium sulfate solution recommended for standardization of the inoculum. Hence, in most of our studies we used cultures adjusted to an optical density of 0.10 (650 nm) as the standard inoculum.

Commercial antibiotic disks were obtained from

418

1973

PMID: 4790600

April 1966

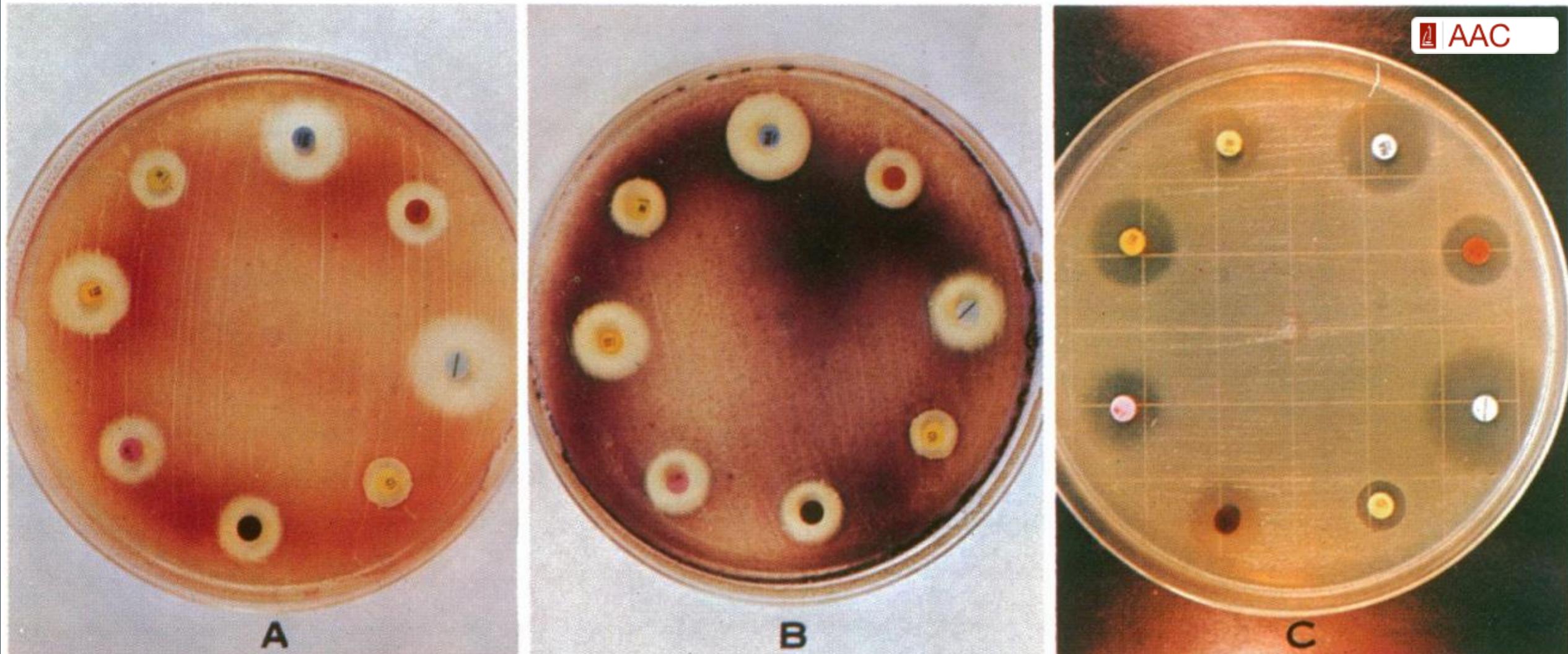


FIG. 1. Comparative detection of the disk susceptibility of *Escherichia coli* ATCC 25922 with the modified Kirby-Bauer method and the standard Kirby-Bauer method. A, Modified Kirby-Bauer with 0.2% INT-tetrazolium; B, modified Kirby-Bauer with 0.5% MTT-tetrazolium; C, standard Kirby-Bauer method.

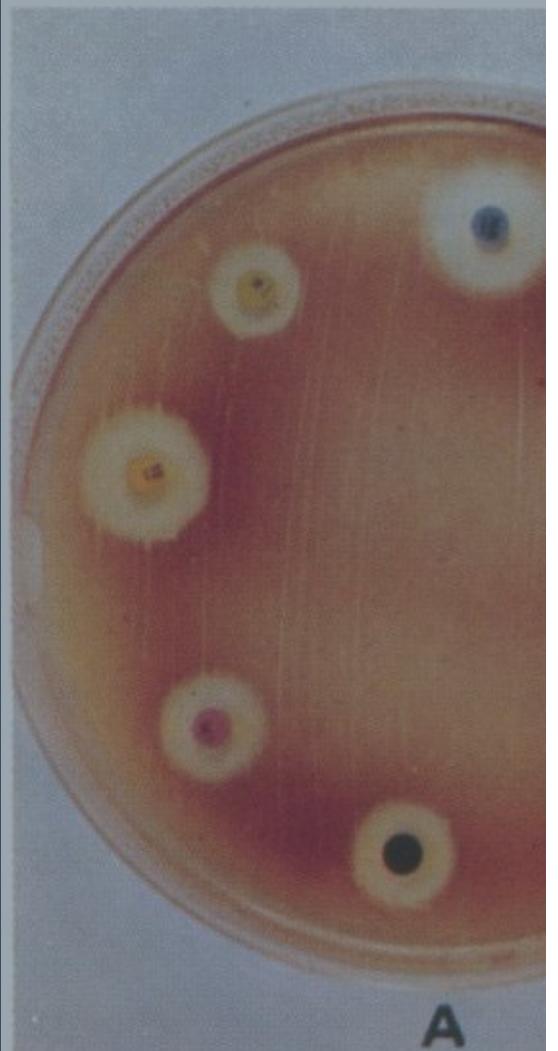
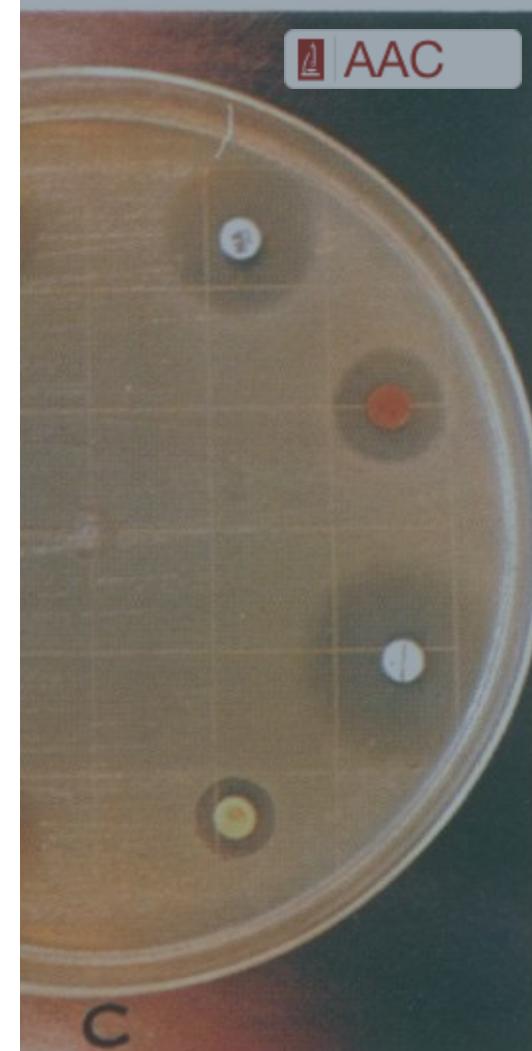
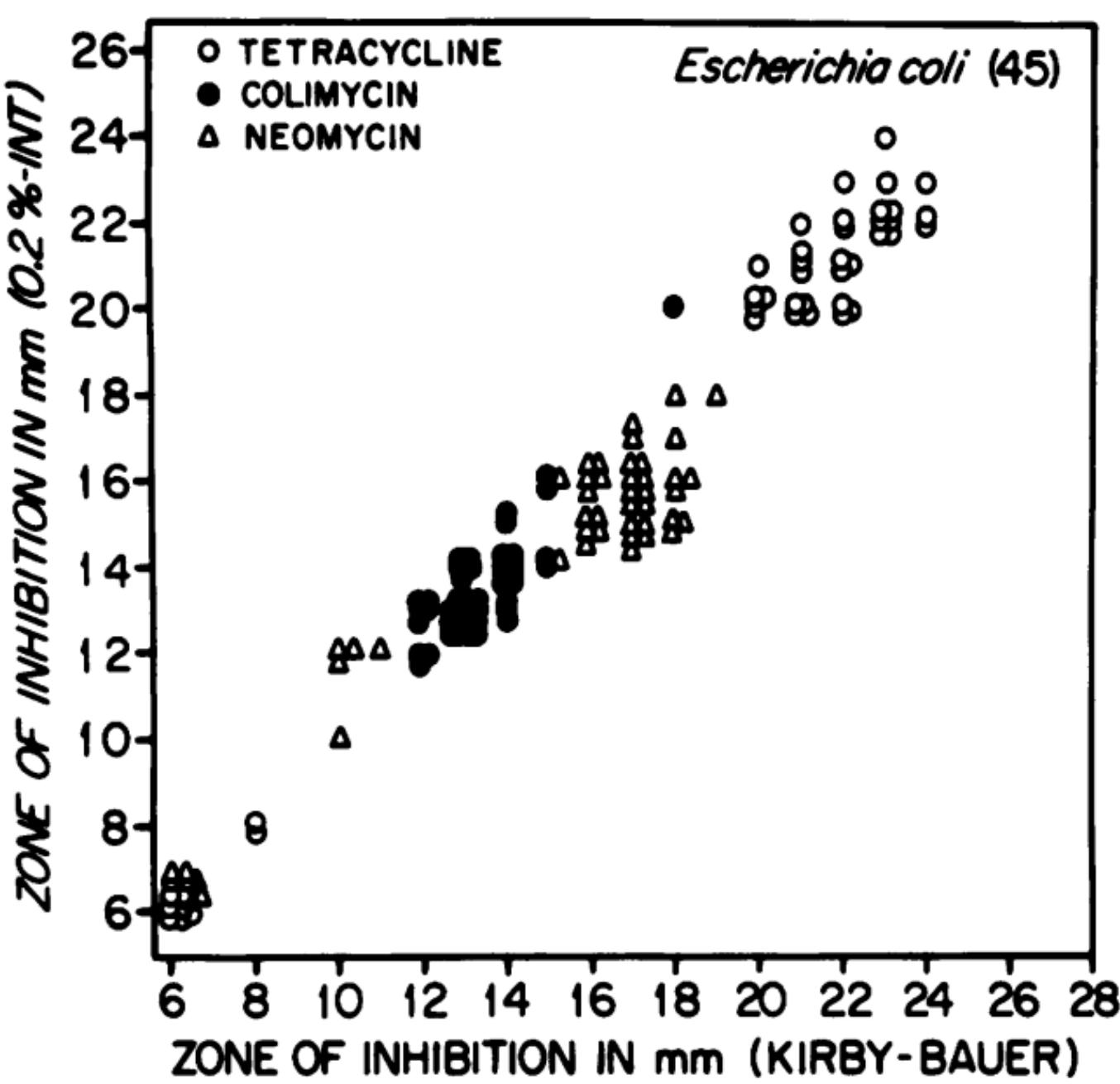




FIG. 1. Comparative Kirby-Bauer method (A, tetrazolium; B, modified).

25922 with the modified Bauer with 0.2% INT-Kirby-Bauer method.

PMID: 4790600


AAC

The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles

Emma Jonasson^{1*}, Erika Matuschek² and Gunnar Kahlmeter^{1,2}

¹Department of Clinical Microbiology, Central Hospital, Växjö, Sweden; ²EUCAST Development Laboratory, Växjö, Sweden

2020 PMID: 32789506

Table 3F-1. Test for Performing Disk Diffusion Directly From Positive Blood Culture Broth

Test	Direct Disk Diffusion
Test method	Disk diffusion using positive blood culture broth
Organism group	Enterobacterales, <i>Pseudomonas aeruginosa</i> , and <i>Acinetobacter</i> spp.
Medium	MHA
Antimicrobial concentration	Standard disk contents for the antimicrobial agents are detailed in Table 3F-2 (Enterobacterales), Table 3F-3 (<i>P. aeruginosa</i>), and Table 3F-4 (<i>Acinetobacter</i> spp.).
Inoculum	Positive blood culture broth with gram-negative bacilli, used within 8 h of flagging positive by the blood culture system
Test procedure	<ol style="list-style-type: none">1. Invert blood culture bottle 5–10 times to thoroughly mix.2. Sterilize the top of the bottle with an alcohol wipe (allow to dry) and insert 20-gauge venting needle into the blood culture bottle.3. Dispense 4 drops of blood culture broth onto an MHA plate. As a purity check, use an inoculated blood agar plate streaked for isolation.4. Spread blood culture broth across the entire surface of the MHA plate using a sterile cotton swab.5. Repeat this procedure by streaking twice more, rotating the plate approximately 60 degrees each time to ensure an even distribution of inoculum.6. Leave the lid ajar for 3–5 minutes (ideally) but no more than 15 minutes.7. Dispense antimicrobial disks onto the surface of the inoculated MHA plate.8. Press each disk down to ensure complete contact with the agar surface.9. Invert the plate and place in the incubator within 15 minutes of disks being applied.
Incubation conditions	35°C ± 2°C; ambient air
Incubation length	8–10 h or 16–18 h (refer to Tables 3F-2, 3F-3, and 3F-4 for antimicrobial agent–specific incubation lengths)

What is rapid?

Evaluation of VITEK 2 Rapid Identification and Susceptibility Testing System against Gram-Negative Clinical Isolates

THOMAS K. W. LING,* P. C. TAM, Z. K. LIU, AND AUGUSTINE F. B. CHENG

Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China

Received 9 April 2001/Returned for modification 8 May 2001/Accepted 18 May 2001

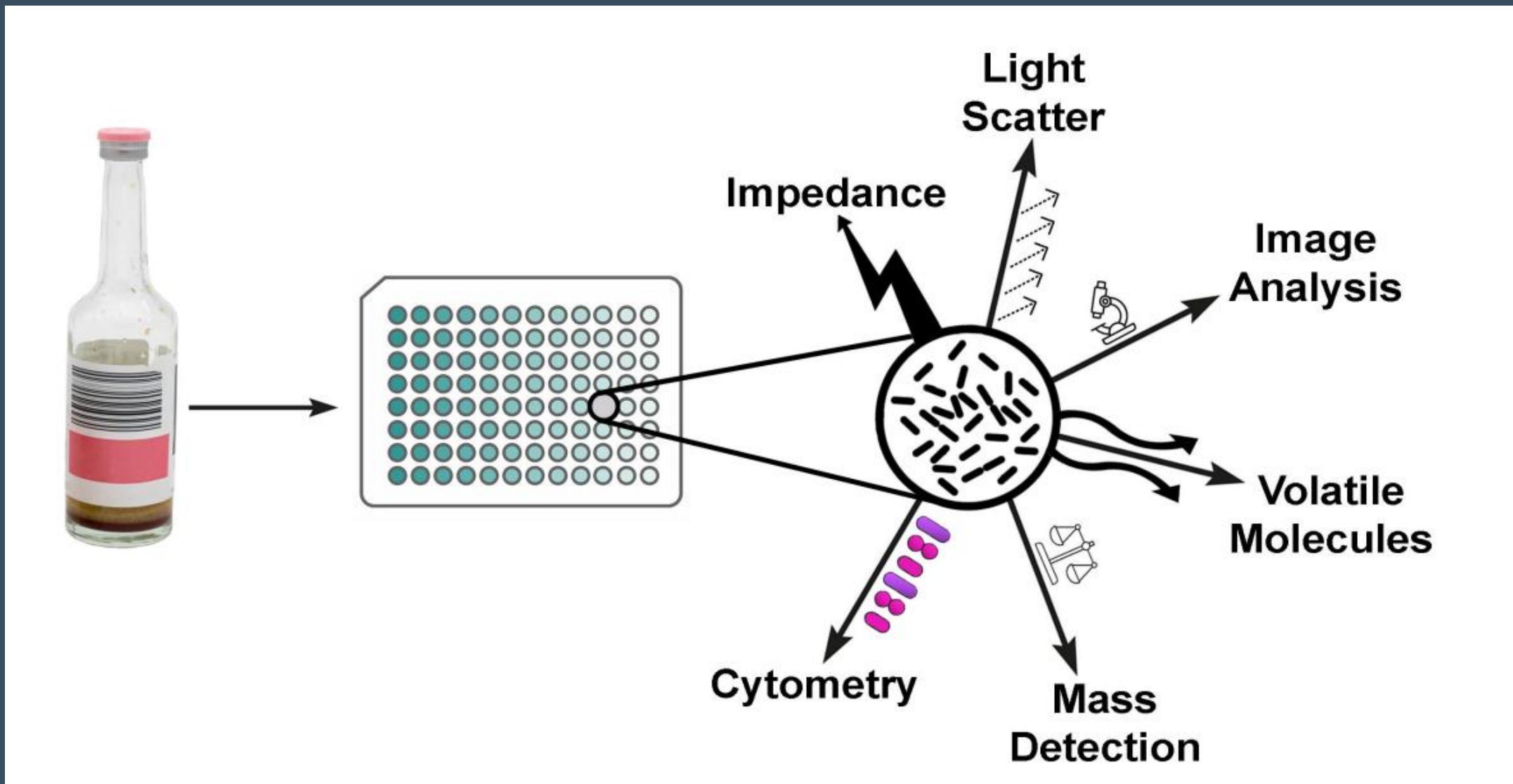
A total of 281 strains of miscellaneous members of the family Enterobacteriaceae, *Pseudomonas aeruginosa*, and *Acinetobacter* spp. and 11 negative bacteria were evaluated by use of identification tests with the VITEK 2 system (bioMérieux) and the VITEK 2 AST-GNB system (bioMérieux). A total of 237 (95%) strains were correctly identified to the species level, six (2.1%) strains were misidentified, and eight (2.8%) strains were not identified. Among 14 strains with discrepant identifications, 8 (57.1%) strains were nonfermenters. The susceptibilities of 228 strains to 14 antimicrobial agents, including amikacin, netilmicin, tobramycin, gentamicin, ciprofloxacin, imipenem, meropenem, ceftazidime, ceftazidime-piperacillin, and piperacillin in combination with tazobactam were tested with the VITEK 2 AST-GNB system by the broth microdilution (MB) method, according to NCCLS guidelines, as a reference. For 228 antimicrobial combinations, the rates at which duplicate MICs correlated within ± 1 dilution step were 95.6 to 95.6%. Only 13 (0.5%) and 10 (0.4%) of the susceptibility tests gave major errors (resistant by the VITEK 2 system but sensitive by the MB method) and very major errors (sensitive with the VITEK 2 system but resistant by the MB method), respectively. Both VITEK 2 ID-GNB (an identification system) and VITEK 2 AST-GNB (a susceptibility testing system) card systems gave rapid, reliable, and highly reproducible results.

Evaluation of the VITEK 2 System for Rapid Direct Identification and Susceptibility Testing of Gram-Negative Bacilli from Positive Blood Cultures

Thomas K. W. Ling,* Z. K. Liu, and Augustine F. B. Cheng

Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, Special Administrative Region, People's Republic of China

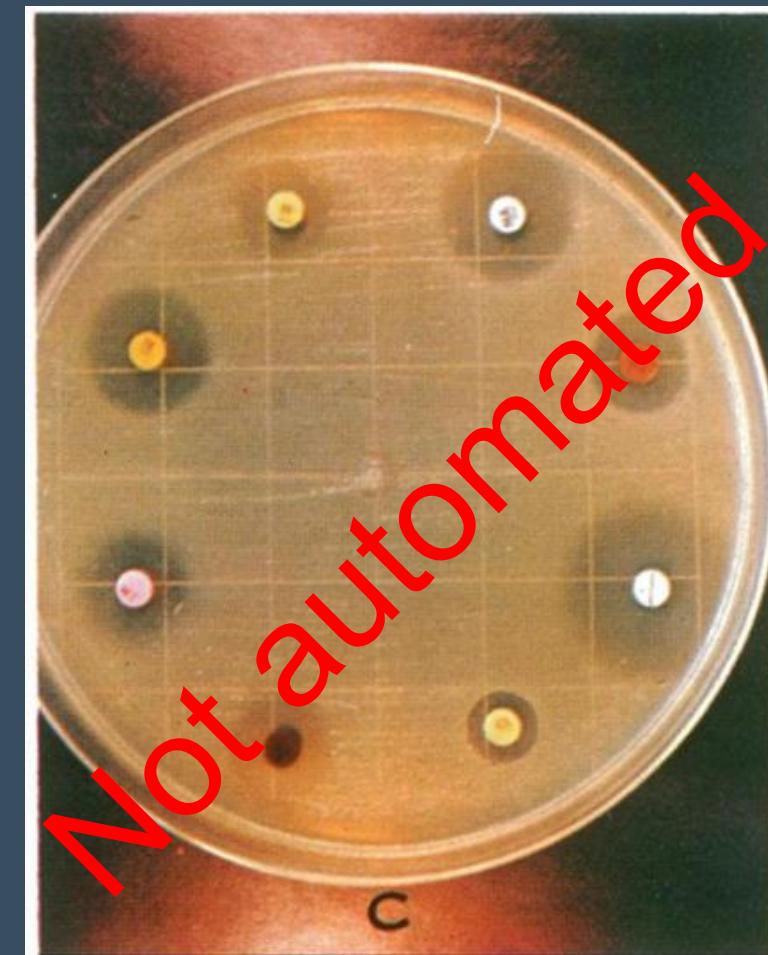
Received 29 April 2003/Returned for modification 9 July 2003/Accepted 29 July 2003


This study explores the possibility of combining the BacT/Alert Microbial Detection System with the VITEK 2 system to achieve rapid bacterial identification and susceptibility testing. Direct inoculation of bacterial suspension to the VITEK 2 ID-GNB card and AST-NO09 card was made by differential centrifugation of blood cultures of organisms with gram-negative enteric bacillus-like morphology. A total of 118 strains were investigated; of these, 97 (82.2%) strains were correctly identified to the species level and 21 (17.8%) strains were misidentified; by comparing the results with those of the reference method of API identification systems using pure culture, it was found that no strain had been misidentified. Among the 21 strains with no identification, 19 (90%) strains were nonfermenters. The direct-identification reporting time of VITEK 2 was 3.3 h. Direct testing of susceptibility to 11 antibiotics, i.e., amikacin, cefepime, ceftazidime, ciprofloxacin, gentamicin, imipenem, meropenem, netilmicin, piperacillin, piperacillin-tazobactam, and tobramycin, was also performed by the broth microdilution (MB) method according to the NCCLS guidelines as a reference. After comparing the MICs of the VITEK 2 system with those obtained by the MB method within \pm twofold dilution, it was determined that the 1,067 organism-antibiotic combinations had an overall correct rate of 97.6% (1,041 combinations). The rates of susceptibility to the 11 antibiotics ranged from 88.7 to 100%, respectively. Only two (0.2%) and four (0.4%) combinations of the susceptibility tests gave very major errors (i.e., reported as sensitive by the VITEK 2 system but shown to be resistant by the MB method) and major errors (i.e., reported as resistant by the VITEK 2 system but shown to be sensitive by the MB method), respectively. The reporting time for the direct testing of susceptibility against the 11 antibiotics for 97 blood culture isolates by the VITEK 2 system ranged from 3.3 to 17.5 h. Compared with conventional methods that require 1 or 2 days, this method can make same-day reporting possible and thus permit better patient management.

Our focus today

- “New” automated commercial solutions for rapid AST
- “Rapid” defined as 8 hours or fewer

Our focus today


Our focus today

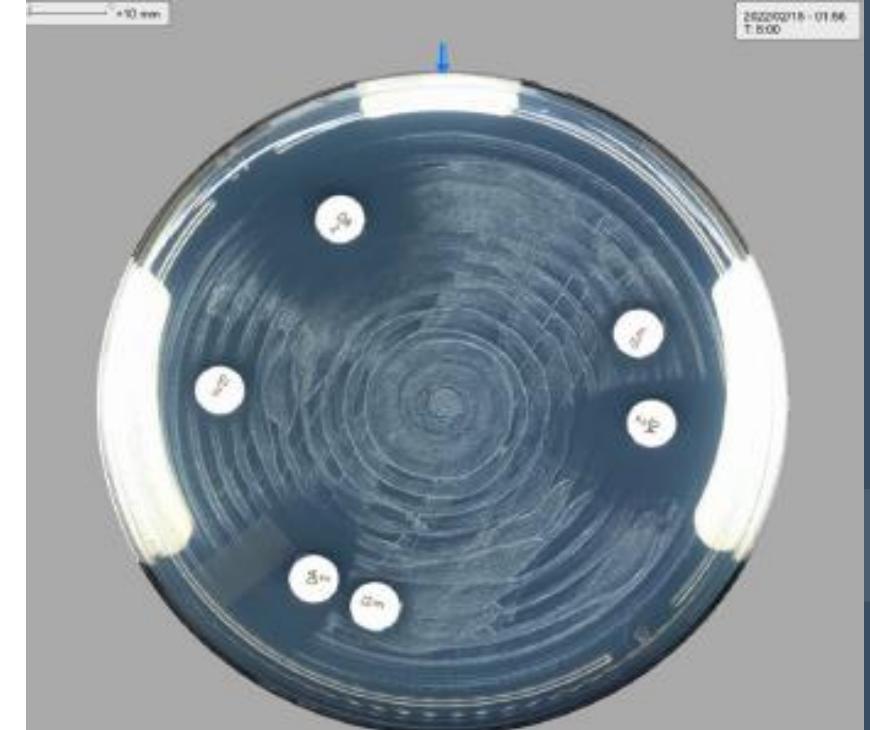
“New” automated commercial solutions for rapid AST

Our focus today

“New” automated commercial solutions for rapid AST

Our focus today

“New” automated commercial solutions for rapid AST


 AMERICAN SOCIETY FOR MICROBIOLOGY | **Journal of Clinical Microbiology®**

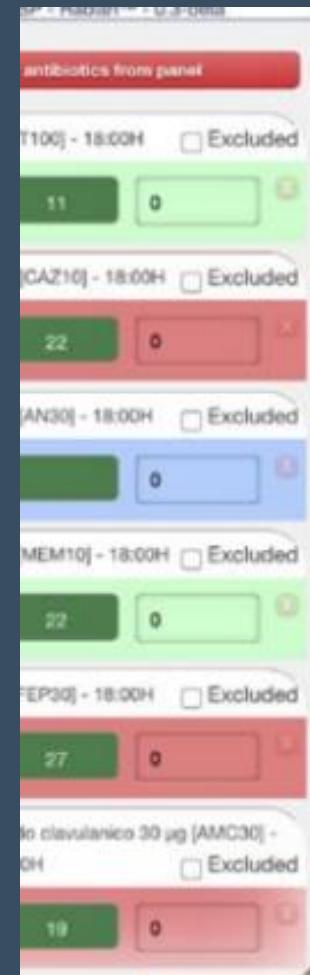
BACTERIOLOGY

Fully Automated EUCAST Rapid Antimicrobial Susceptibility Testing (RAST) from Positive Blood Cultures: Diagnostic Accuracy and Implementation

 Abdessalam Cherkaoui,^{a,b} Didier Schorderet,^a Nouria Azam,^a Luigi Crudeli,^a José Fernandez,^a Gesuele Renzi,^a Adrien Fischer,^a Jacques Schrenzel^{a,c}

^aBacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
^bFaculty of Medicine, Geneva, Switzerland
^cGenomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

Copan Radian



Radian is on the market in the USA, but it has not yet been evaluated by the FDA.

Rapid Incubation

Apply EUCAST Rapid Rules for Incubation, and let WASPLab® digitalize plates at different times.

J Antimicrob Chemother
doi:10.1093/jac/dkx026

**Journal of
Antimicrobial
Chemotherapy**

Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study

Michael Hombach*†, Marion Jetter†, Nicolas Blöchliger, Natalia Kolesnik-Goldmann and Erik C. Böttger

Species/drug	readability	categorical agreement			vMEs	MEs	mEs
		v	ME	m			
<i>E. coli</i> , n = 291							
ampicillin	100	100			0.3	0.0	0.0
amoxicillin/clavulanate	100	89.0			0.7	10.7	0.0
piperacillin/tazobactam	100	96.6			0.3	0.0	3.4
cefuroxime	100	97.6			2.8	0.0	0.0
cefoxitin	100	95.2			3.8	1.4	0.0
cefpodoxime	100	97.2			2.4	0.7	0.0
ceftriaxone	100	100			0.0	0.0	0.3
cefepime	100	99.0			0.0	0.0	1.4
meropenem	100	100			0.0	0.0	0.3
norfloxacin	100	93.8			0.0	0.0	6.6
ciprofloxacin	100	97.6			0.0	0.0	2.8
levofloxacin	100	95.2			0.0	0.0	5.2
amikacin	100	97.6			0.0	0.0	2.8
gentamicin	100	99.3			0.0	0.0	1.0
tobramycin	100	90.0			0.0	0.0	10.3
tigecycline	100	99.3			0.0	0.0	1.0
nitrofurantoin	100	99.3			1.0	0.0	0.0
trimethoprim/sulfamethoxazole	100	91.4			3.8	0.0	5.2
average	100	96.6			0.8	0.7	2.2

2

Accelerate Pheno

- Direct from positive blood culture in 7 hours
- Susceptibility determined using microscopic analysis
- Identification using nucleic acid probes
- Physically large consumables

	Identification
<i>E. coli</i>	●
<i>Klebsiella</i> spp.	●
<i>Enterobacter</i> spp.	●
<i>Proteus</i> spp.	●
<i>Citrobacter</i> spp.	●
<i>S. marcescens</i>	●
<i>P. aeruginosa</i>	●
<i>A. baumannii</i>	●

2

Accelerate Pheno

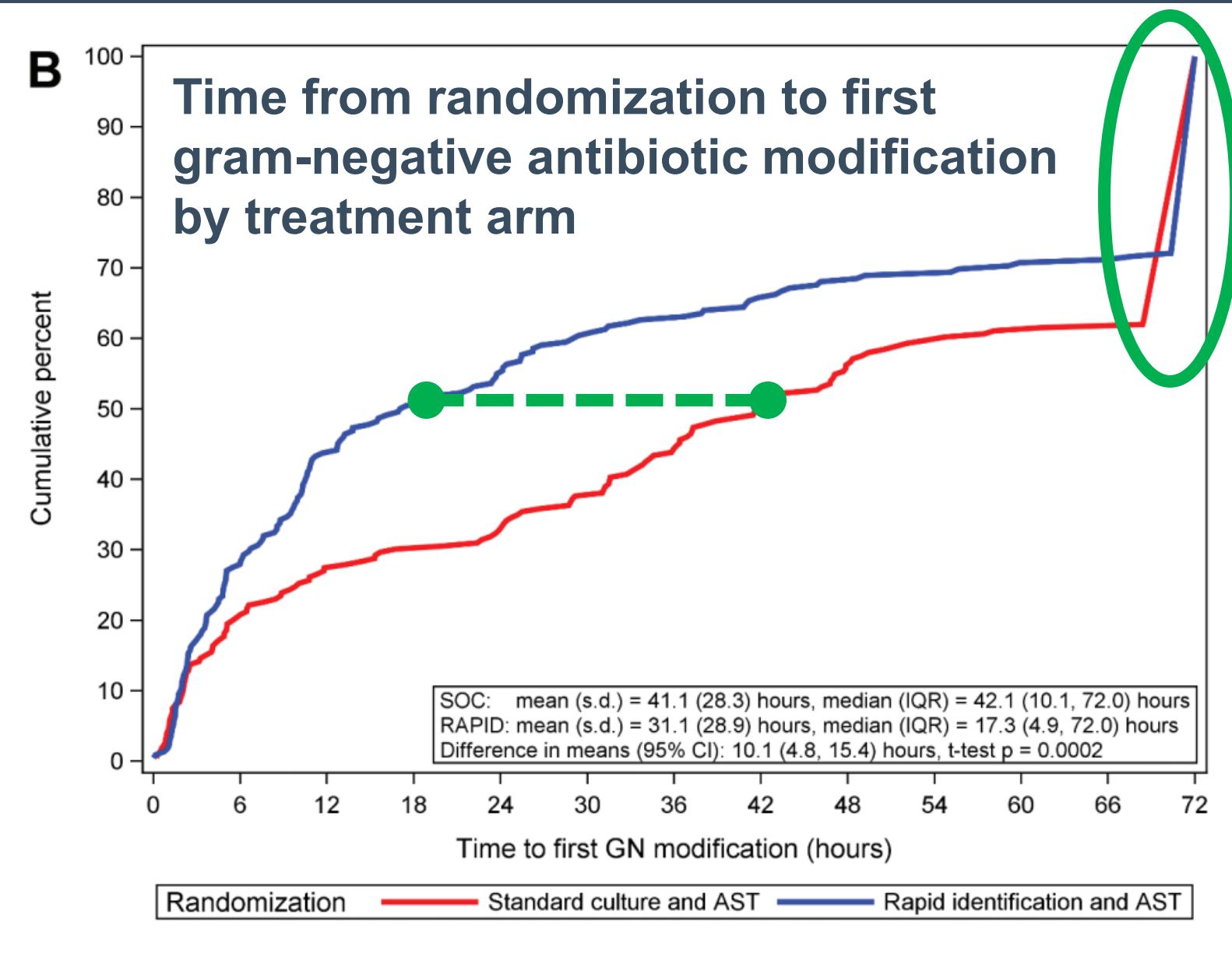
Rapid AST determined by “Morphokinetic Cellular Analysis”

2

Accelerate Pheno

Clinical Infectious Diseases

MAJOR ARTICLE

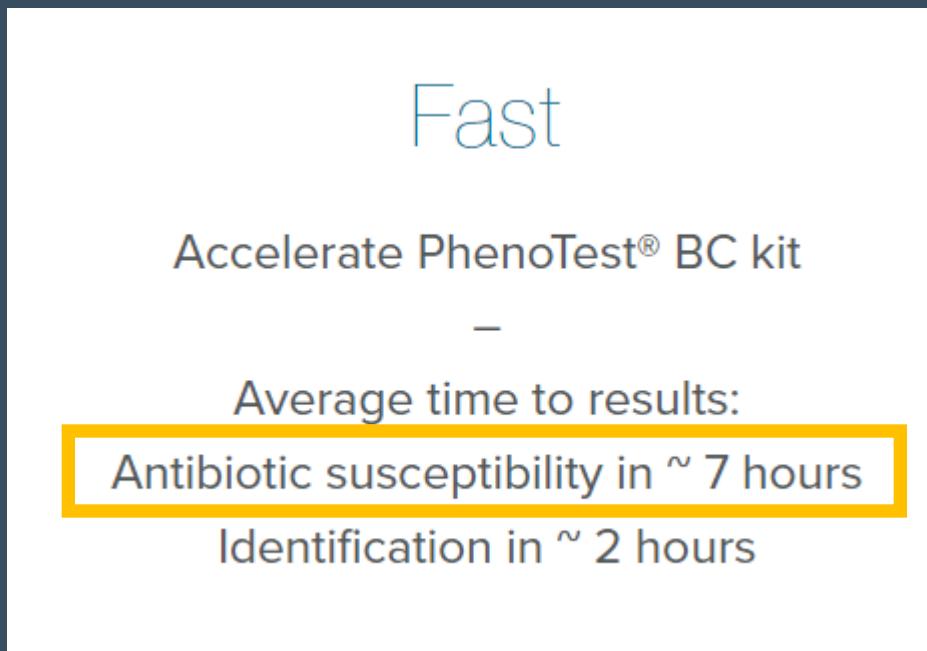


Randomized Trial Evaluating Clinical Impact of RAPid IDentification and Susceptibility Testing for Gram-negative Bacteremia: RAPIDS-GN

Ritu Banerjee,¹ Lauren Komarow,² Abinash Virk,³ Nipunie Rajapakse,³ Audrey N. Schuetz,³ Brenda Dylla,³ Michelle Earley,² Judith Lok,⁴ Peggy Kohner,³ Sherry Ihde,³ Nicolynn Cole,³ Lisa Hines,³ Katelyn Reed,³ Omai B. Garner,⁵ Sukantha Chandrasekaran,⁵ Annabelle de St. Maurice,⁵ Meganne Kanatani,⁵ Jennifer Curello,⁵ Rubi Arias,⁵ William Swearingen,⁵ Sarah B. Doernberg,⁶ and Robin Patel³; for the Antibacterial Resistance Leadership Group

PMID: 32374822

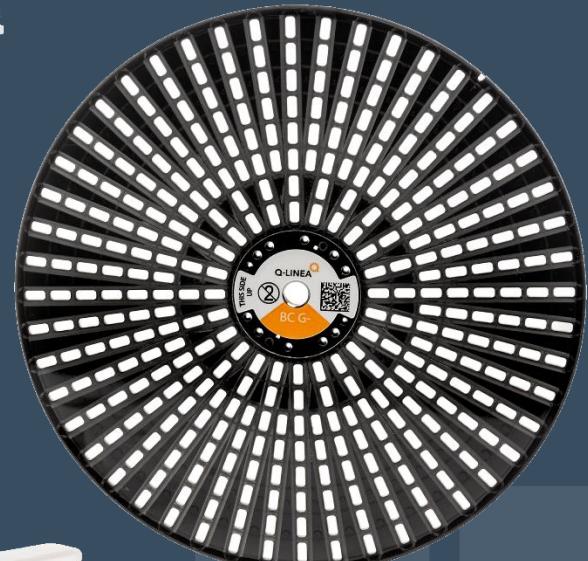
Accelerate Pheno


2

Accelerate Pheno

	Standard AST method (h)	Rapid AST method (h)
Standard of care cohort	45 ± 12	--
Rapid AST cohort	50 ± 16	13.5 ± 56

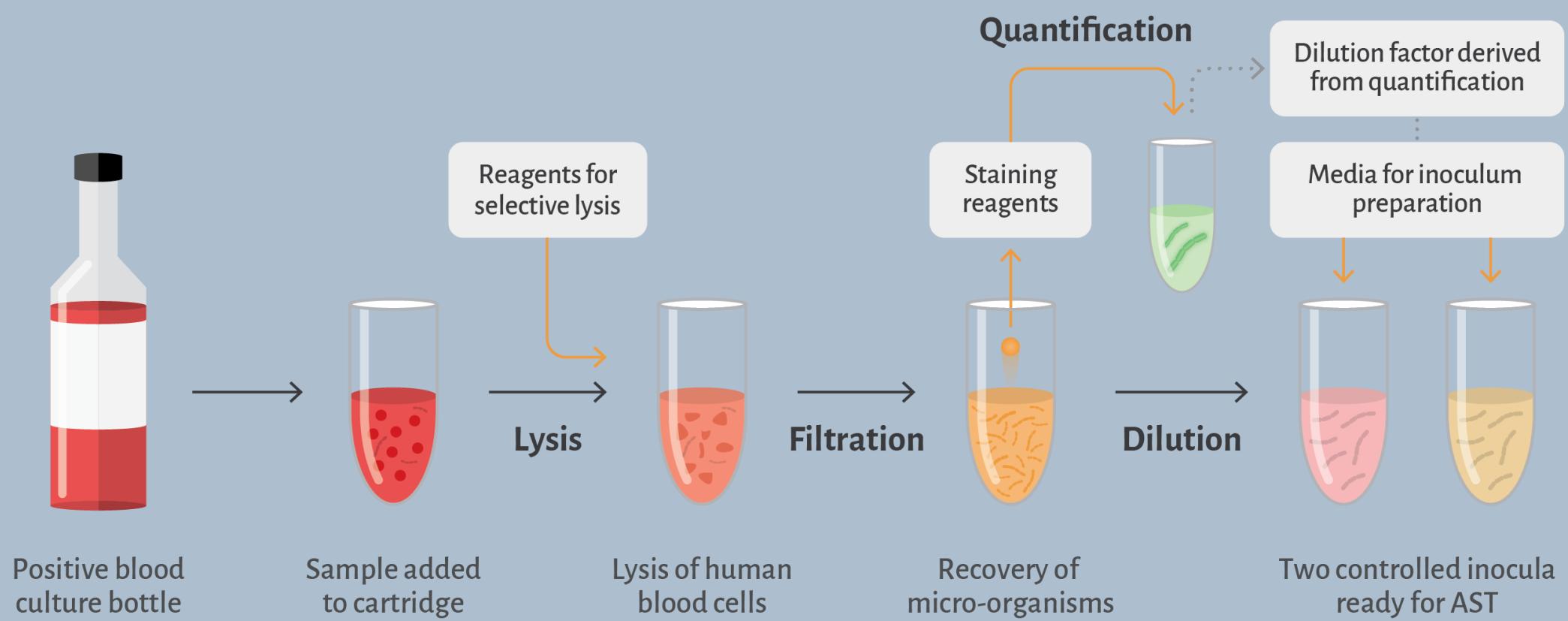
yymm


PMID: 32374822

3

Q-Linea ASTar

- Direct from positive blood culture in 6 hours
- Susceptibility determined using microscopic analysis
- Random-access 12 samples per instrument

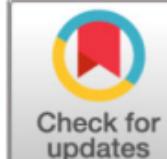

3

Q-Linea ASTar

- Direct from positive blood culture
- Susceptibility determined using microscopic analysis
- Random-access 12 samples per instrument

Table 1: ASTar BC G- Kit Product Panel

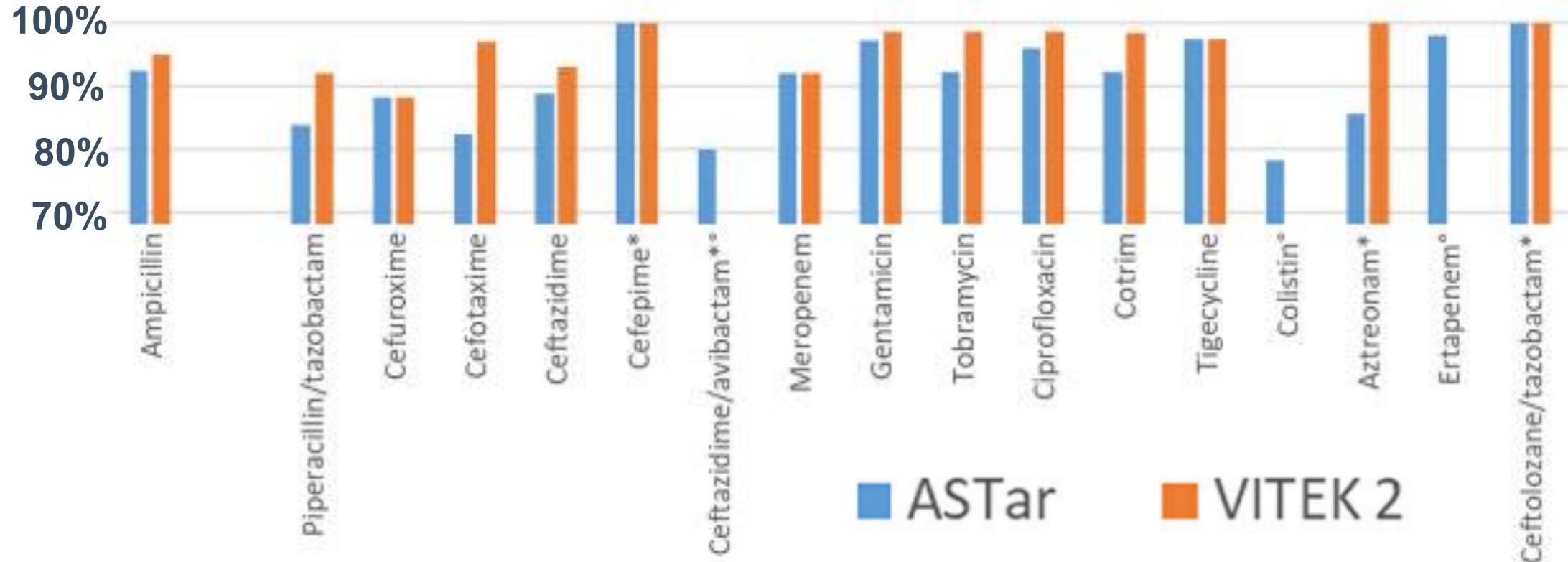
Antimicrobial class	Antimicrobial agent	<i>A. baumannii</i>	<i>C. freundii</i>	<i>C. koseri</i>	<i>E. cloacae complex*</i>	<i>E. coli</i>	<i>K. aerogenes</i>	<i>K. oxytoca</i>	<i>K. pneumoniae</i>	<i>P. aeruginosa</i>	<i>P. mirabilis</i>	<i>P. vulgaris</i>	<i>S. marcescens</i>
Penicillins	Ampicillin					●							
β-lactam combination agents	Ampicillin-sulbactam					●		●	●		●	●	
β-lactam combination agents	Ceftazidime-avibactam	●	●	●				●		●	●		●
β-lactam combination agents	Meropenem-vaborbactam	●	●	●	●	●	●	●	●		●		●
β-lactam combination agents	Piperacillin-tazobactam		●		●				●		●	●	●
Cephalosporin	Cefazolin								●				
Cephalosporin	Cefepime		●			●	●	●	●	●	●	●	●
Cephalosporin	Cefuroxime					●	●	●	●				●
Cephalosporin	Ceftazidime				●	●		●	●		●	●	●
Monobactam	Aztreonam			●	●	●	●	●	●		●	●	●
Carbapenem	Meropenem	●	●	●		●				●	●	●	●
Aminoglycoside	Gentamicin		●	●				●	●	●	●	●	●
Aminoglycoside	Tobramycin		●	●	●	●			●		●		●
Aminoglycoside	Amikacin		●		●		●	●	●	●	●	●	●
Tetracycline	Tigecycline		●	●	●	●	●	●	●				●
Fluoroquinolone	Ciprofloxacin			●	●	●	●	●	●	●	●	●	●
Fluoroquinolone	Levofloxacin		●	●	●	●	●	●	●	●	●	●	●
Miscellaneous	Trimethoprim-sulfamethoxazole				●	●	●	●	●				●


*Enterobacter cloacae complex includes *E. cloacae*, *E. asburiae* and *E. hormaechei*.

Q-Linea ASTar

Journal of
Clinical Microbiology

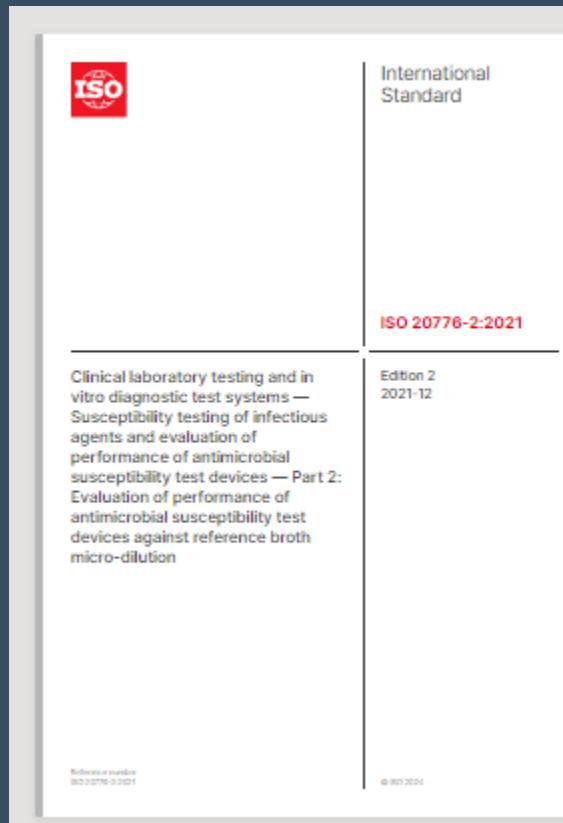
Clinical Microbiology | Full-Length Text


Rapid phenotypic antimicrobial susceptibility testing of Gram-negative rods directly from positive blood cultures using the novel Q-linea ASTar system

Jan Esse,¹ Johannes Träger,¹ Giuseppe Valenza,¹ Christian Bogdan,¹ Jürgen Held¹

Q-Linea ASTar

Essential agreement



Comparison of essential agreement using ASTar and the lab's SOC rapid method (modified Vitek 2) was similar when Micronaut-S (Merlin; Germany) was used as the reference.

ISO 20776-2:2021

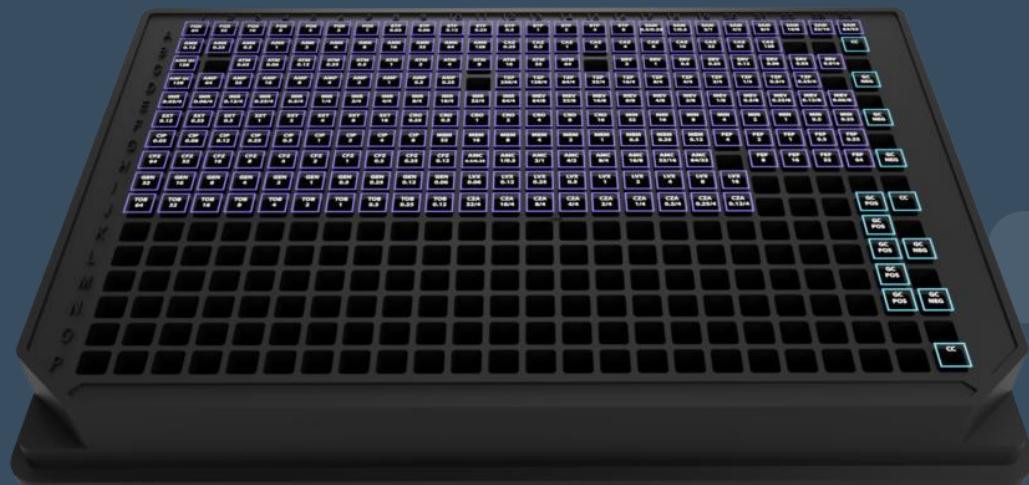
“MIC AST devices should always have both an overall EA of $\geq 90\%$ when compared to the reference method result(s) and less than $\pm 30\%$ bias.”

“When making the comparison between any derivative test and that of the reference method, it is appropriate to apply measures of assay performance only and not result interpretation.”

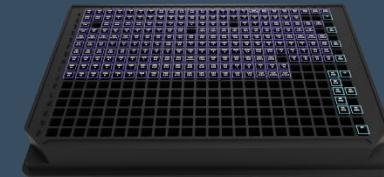
The image shows the front cover of the ISO 20776-2:2021 standard document. The cover is white with a grey border. In the top left corner is the ISO logo. To the right of the logo, the text "International Standard" is written. Below that, the standard number "ISO 20776-2:2021" is printed in red. The main title "ISO 20776-2:2021" is prominently displayed in large, bold, black font. Below the title, the scope of the standard is described: "Clinical laboratory testing and in vitro diagnostic test systems — Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices — Part 2: Evaluation of performance of antimicrobial susceptibility test devices against reference broth micro-dilution". At the bottom of the cover, there is a small line of text: "Reference number ISO 20776-2:2021" and "© ISO 2021".

ISO 20776-2:2021

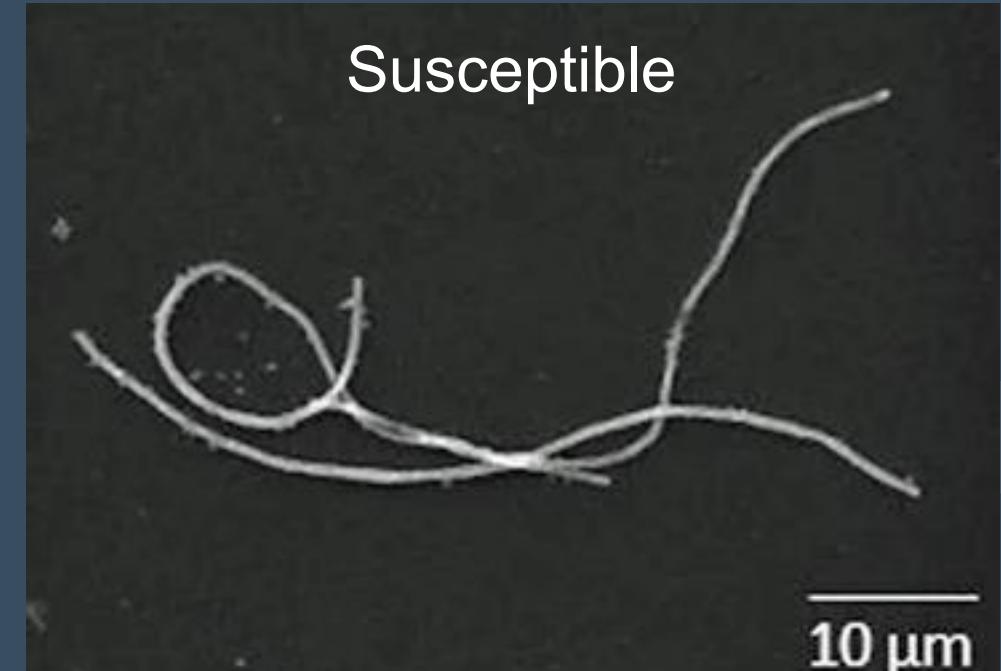
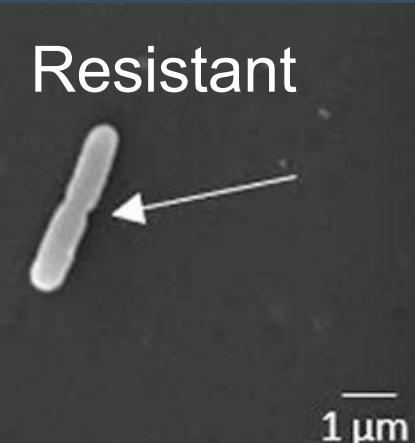
Clinical laboratory testing and in vitro diagnostic test systems — Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices — Part 2: Evaluation of performance of antimicrobial susceptibility test devices against reference broth micro-dilution

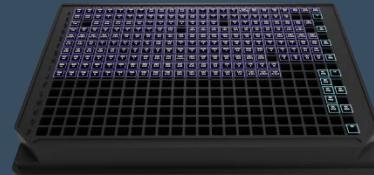

Published (Edition 2, 2021)

4



Selux Next-Gen Phenotyping



- Isolates or direct from positive blood culture in 6-7 hours
- Susceptibility determined by fluorescent growth indicators including a viability assay (resazurin) and a surface-binding assay (europium probe)
- Large antibiotic dilution series (384-well platform) & capacity for 86 panels
- 23 gram-negative drugs & 14 gram-positive drugs
- Large instrument



Selux NGP

- Isolates or direct from positive blood culture in 6-7 hours
- Susceptibility determined by fluorescent growth indicators including a viability assay (resazurin) and a surface-binding assay (europium probe)
- Large antibiotic dilution series (384-well platform) & capacity for 96 panels
- 23 gram-negative drugs & 14 gram-positive drugs

Journal of
Clinical Microbiology

8 | Antimicrobial Chemotherapy | Full-Length Text

Multicenter evaluation of the Selux Next-Generation Phenotyping antimicrobial susceptibility testing system

Kristin R. Baker,¹ Kelly Flentie,¹ Benjamin R. Spears,¹ Sergey Mozharov,¹ Kristen Roberts,¹ Asmae El ganbour,¹ Mark Somers,¹ John Calkwood,¹ Jamie Liu,¹ Kayla DaPonte,¹ Nikitha Sam,¹ Gurleen Kaur,¹ Felicia Chen,¹ Jonathan Donato,¹ Alan Chao,¹ Autumn Lewis,¹ Jingzi Sherman,¹ Karen Mortimer,¹ Amanda T. Harrington,² Maria Traczewski,³ Darcie Carpenter,⁴ Dee Shortridge,⁵ Jill Lindley,⁵ Alexander Diep,⁶ Emmet Norton,⁶ Matt Green,⁶ Joe Gajewski,⁶ Rebecca Landrith,⁶ Fatuma Nalubega,⁶ Justin McCallum,⁷ Melissa Beiswenger,⁷ Brittany Dolan,⁷ Kathleen Brennan,⁷ Afton Carpenter,⁷ Aleksandar Vacic,¹ Alec N. Flyer,¹ Virginia M. Pierce,⁸ David C. Hooper,⁹ James S. Lewis II,¹⁰ Eric Stern¹

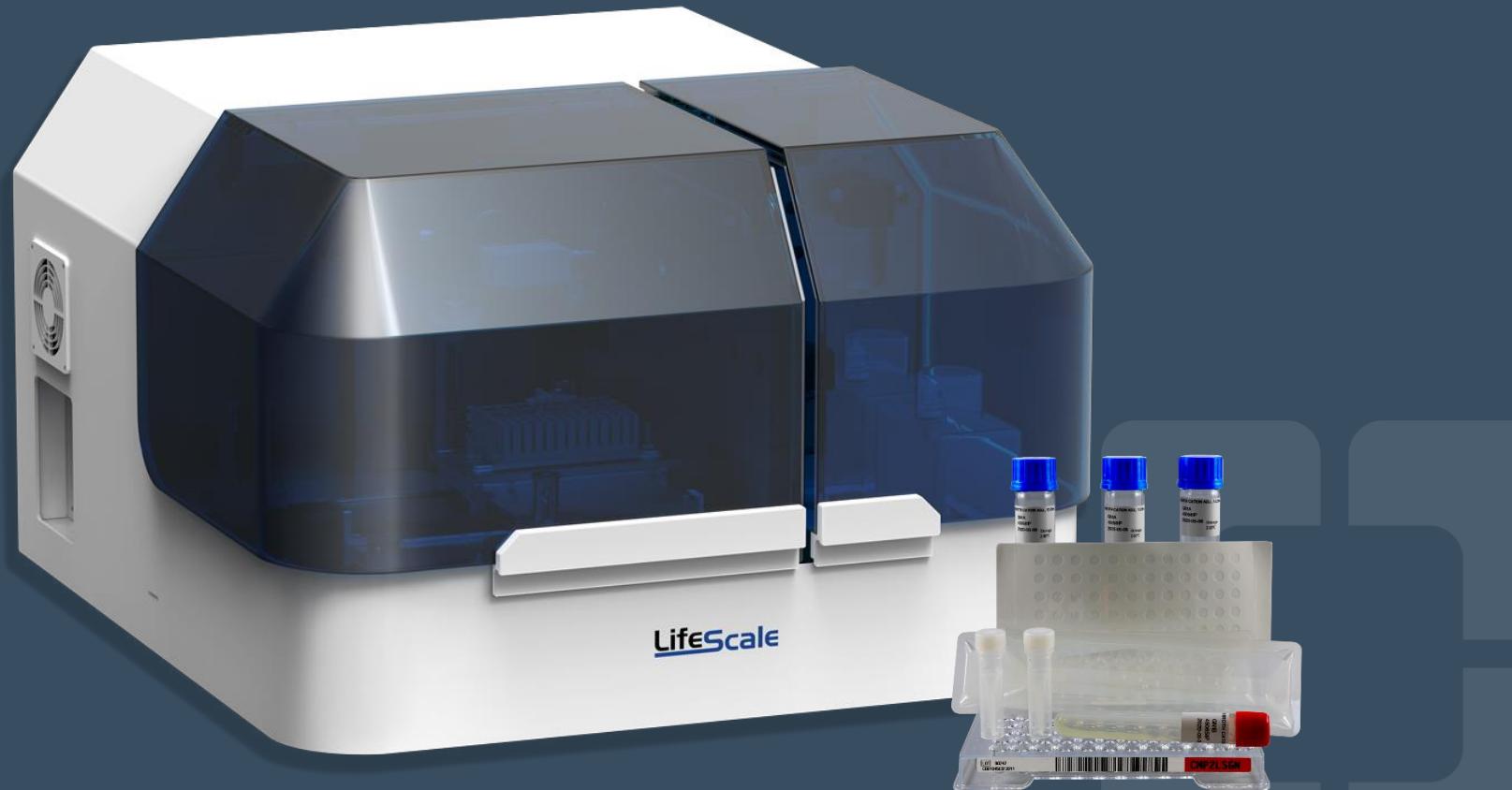
Selux NGP

Some species have longer turnaround times.

90% or better essential agreement obtained.

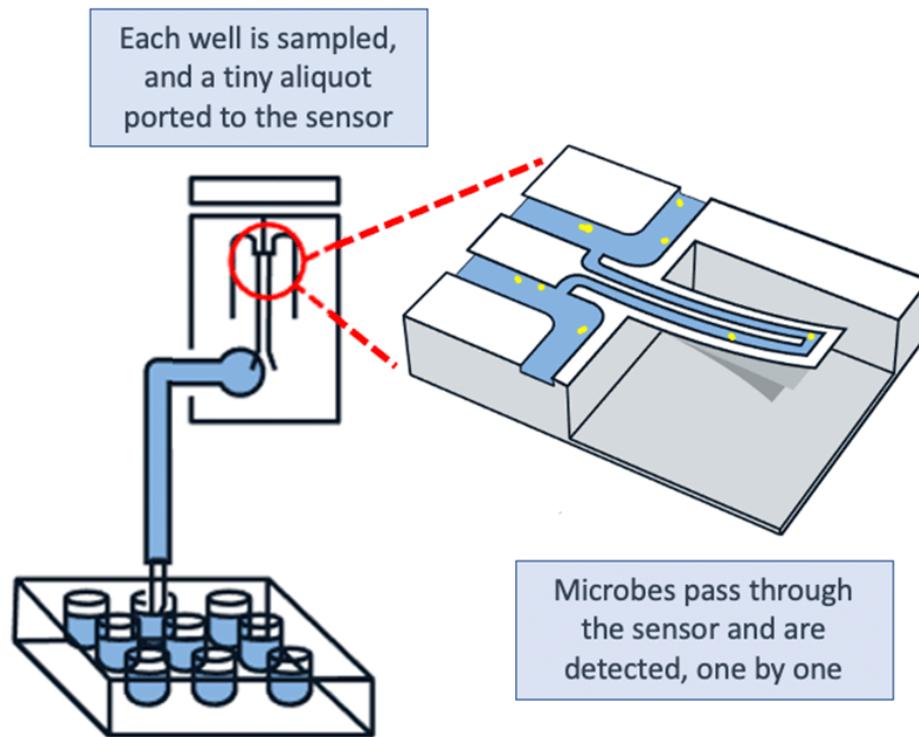
TABLE 3 Average TTR^a

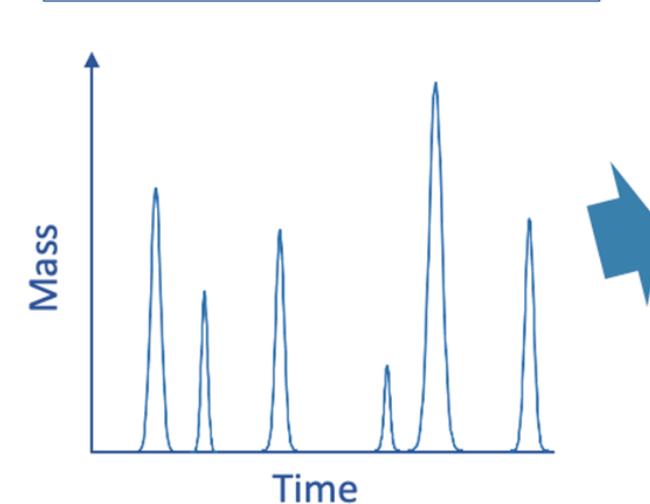
Organism group or species	Total tested	TTR (hour)		
		Mean	Min	Max
<i>A. baumannii</i> complex	120	5.66	5.18	7.73
<i>Citrobacter freundii</i> complex	64	5.59	5.20	7.27
<i>Citrobacter koseri</i>	60	5.66	5.22	7.36
<i>Enterobacter cloacae</i> complex	79	5.71	5.19	7.30
<i>Escherichia coli</i>	188	5.52	5.17	7.15
<i>Klebsiella aerogenes</i>	39	5.59	5.23	6.82
<i>Klebsiella oxytoca</i>	31	5.65	5.24	7.18
<i>Klebsiella pneumoniae, variicola</i>	141	5.59	5.18	7.15
<i>Morganella morganii</i>	63	5.48	5.21	6.74
<i>Proteus mirabilis</i>	62	5.53	5.14	6.19
<i>Proteus vulgaris</i>	58	5.53	5.20	7.23
<i>P. aeruginosa</i>	172	7.04	5.21	10.32
<i>Serratia marcescens</i>	63	5.66	5.22	7.30
<i>Enterococcus faecalis</i>	110	5.37	5.04	6.24
<i>Enterococcus faecium</i>	120	5.47	5.14	8.29
<i>S. aureus</i>	156	5.38	5.08	7.09
Coagulase-negative <i>Staphylococcus</i> spp.	100	5.63	5.08	8.49

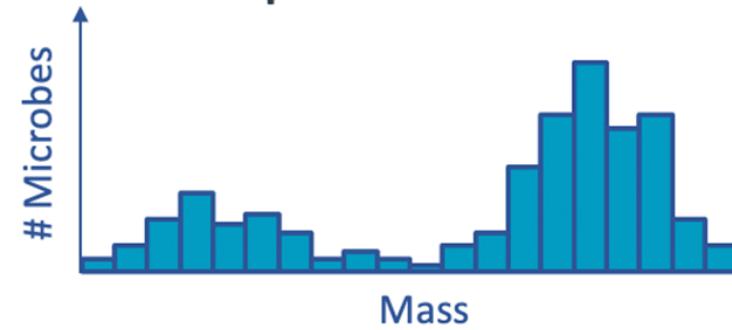

^aTTR defined as the time panels were placed on the analyzer (Selux NGP assay start) until MIC value was generated.

5

Affinity Biosensors LifeScale AST

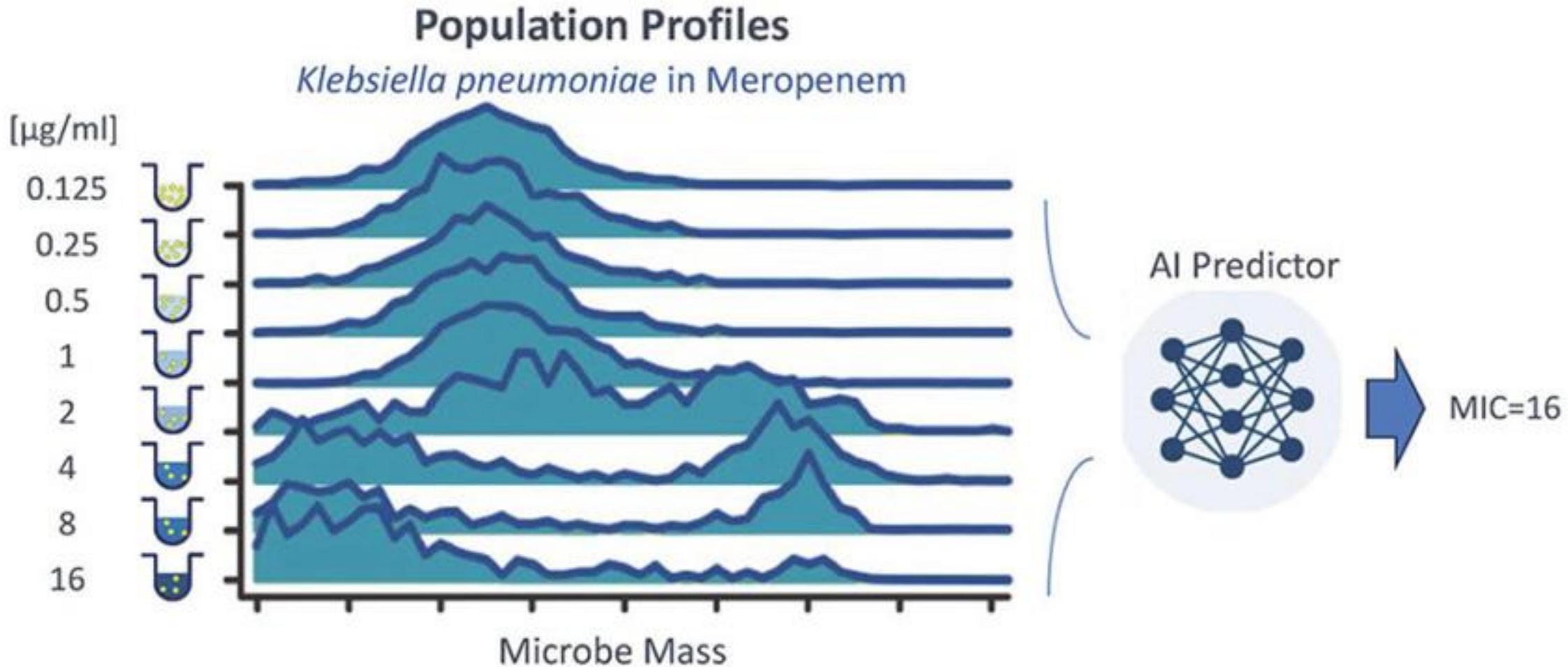

- Gram-negatives from positive blood cultures in 5 hours
- Susceptibility determined using a microfluidic sensor and resonant frequency to calculate organism concentration and/or mass distribution


5


LifeScale AST

Each peak is the sensor response (frequency shift) when a microbe passes through. The size of the peak indicates the mass of the microbe.

Population Profile



Many microbes are measured from each well, and the distribution of their masses is compiled. This is the **Population Profile** for that well/culture.

5

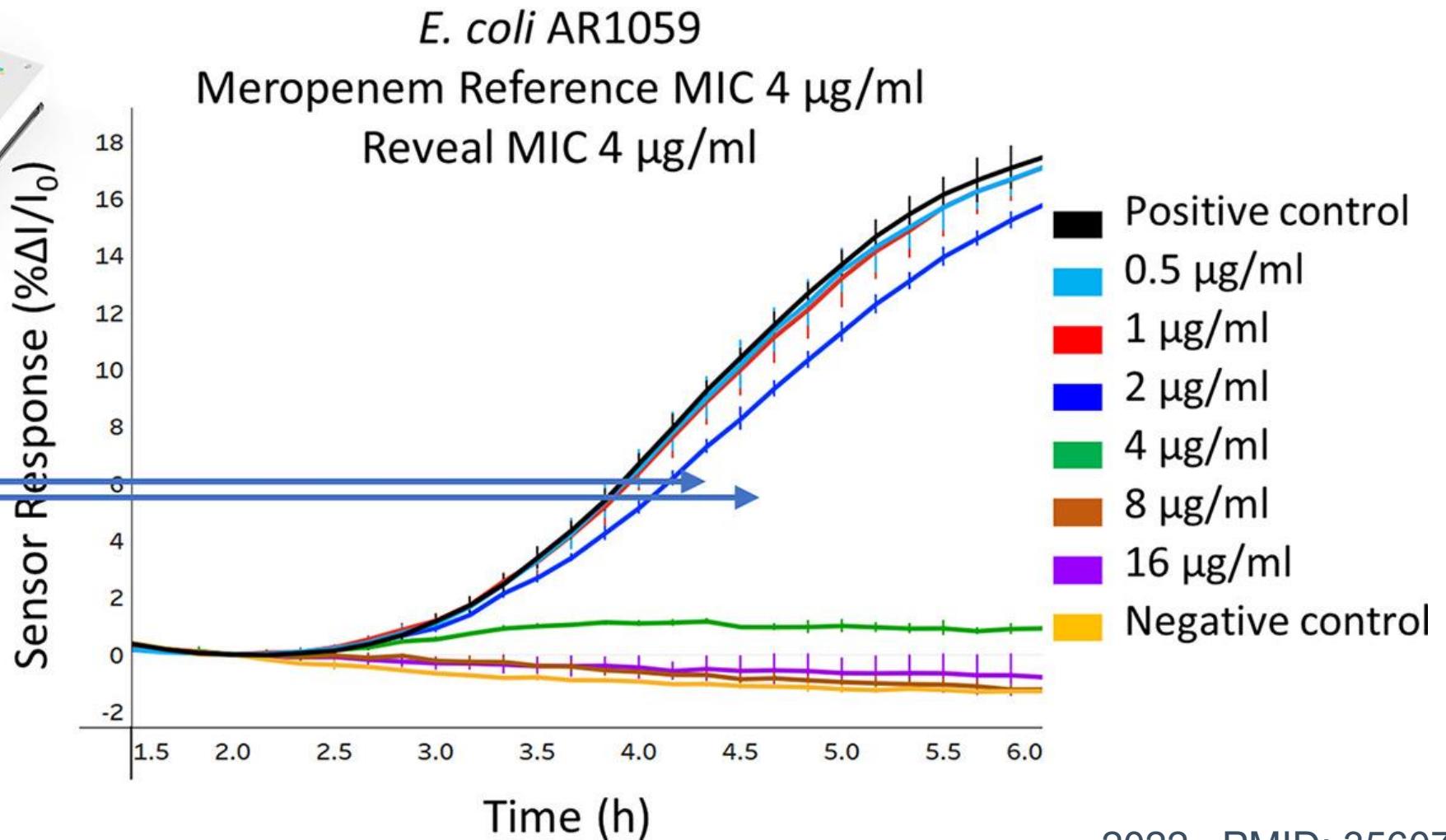
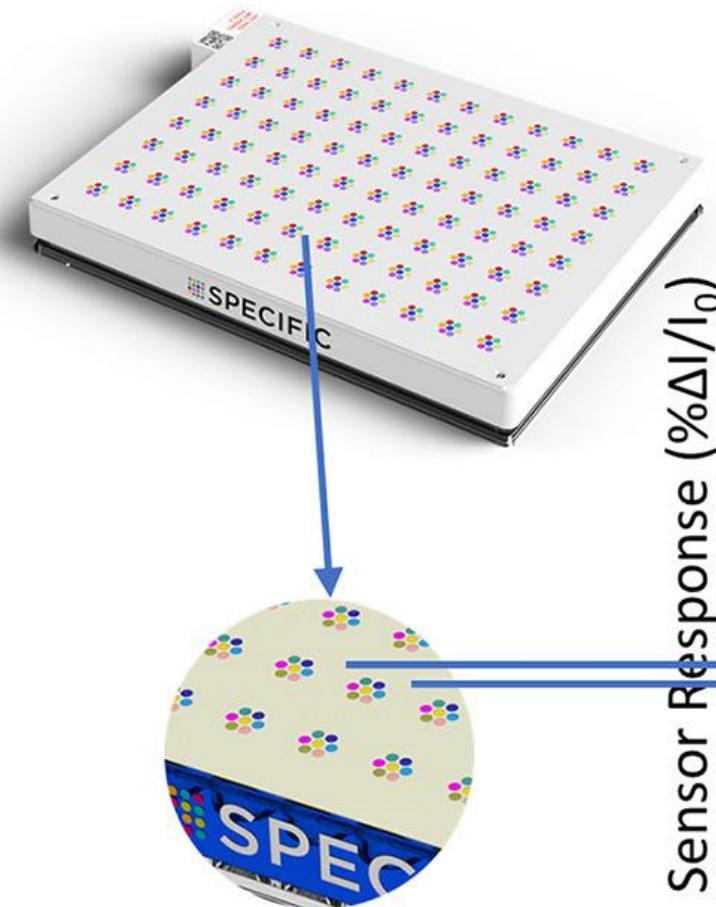
LifeScale AST

LifeScale AST

TABLE 4 Performance versus SOC

Antibiotic (abbr. reported organisms ^a)	Number evaluated	Essential agreement (%) ^b	Categorical agreement (%) ^b
All	1,082	97.32 (1,053/1,082)	96.11 (1,039/1,081)
Amikacin (A, E, K.p., K.o., K.v., K.a., and P)	100	100.00 (100/100)	99.00 (99/100)
Ampicillin (E)	42	100.00 (42/42)	100.00 (42/42)
Aztreonam (E, K.p., K.o., and K.a.)	76	97.37 (74/76)	97.37 (74/76)
Cefazolin (E, K.p., and K.v)	67	88.06 (59/67)	86.96 (60/69)
Cefepime (E, K.p., K.o., and K.a.)	78	98.72 (77/78)	98.72 (77/78)
Ceftazidime (A, E, K.p., K.o., K.v., and K.a.)	96	96.88 (93/96)	94.79 (91/96)
Ceftazidime/avibactam (E, K.p., K.o., and K.a.)	76	100.00 (76/76)	100.00 (75/75)
Ertapenem (E, K.p., and K.a.)	76	100.00 (76/76)	100.00 (76/76)
Gentamicin (E, K.p., K.o, K.v., K.a., and P)	92	93.48 (86/92)	98.91 (91/92)
Levofloxacin (E, K.p., K.o, K.a., and P)	96	98.96 (95/96)	90.63 (87/96)
Meropenem (A, E, K.p., and P)	98	98.98 (97/98)	97.96 (96/98)
Mero/vaborbactam (E, K.p., K.o., and K.a.)	24	100.00 (24/24)	100.00 (24/24)
Piperacillin/tazobactam (A, E, K.p., K.a., and P)	85	94.12 (80/85)	86.75 (72/83)
Trimethoprim/sulfamethoxazole (E, K.p., K.o., K.v., and K.a.)	76	97.37 (74/76)	98.68 (75/76)

^aA, *Acinetobacter* sp.; E, *Escherichia coli*; K.a., *Klebsiella aerogenes*; K.o., *Klebsiella oxytoca*; K.p., *Klebsiella pneumoniae*; K.v., *Klebsiella variicola*; P, *Pseudomonas*.



^bEssential and categorical agreement, VMEs, and MEs after resolution by broth microdilution.

	<i>E. coli</i>	<i>Klebsiella spp.</i>	<i>P. aeruginosa</i>	<i>Acinetobacter spp.</i>
Ampicillin	X			
Cefazolin	X	X		
Ceftazidime	X	X	X	X
Cefepime	X	X	X	
Piperacillin-tazobactam	X	X	X	X
Aztreonam	X	X		
Ertapenem	X	X		
Meropenem	X	X	X	X
Ceftazidime-avibactam	X	X	X	
Meropenem-vaborbactam	X	X		
Gentamicin	X	X	X	
Amikacin	X	X	X	X
Trimethoprim-sulfamethoxazole	X	X		
Levofloxacin	X	X	X	

bioMérieux Reveal

- Gram-negatives from positive blood cultures in 5 hours
- Susceptibility determined by monitoring the metabolism of each broth microdilution well using an array of colorimetric sensors that react to volatile organic compounds in the headspace

6

bioMérieux Reveal

Journal of Clinical Microbiology

Antimicrobial Chemotherapy | Full-Length Text

Performance evaluation of the Specific Reveal system for rapid antibiotic susceptibility testing from positive blood cultures containing Gram-negative pathogens

Greta Ostermann,¹ Barbara Körber-Irrgang,¹ Alexander Krüger,^{1,2} Pragya Singh,³ Kenny Vo,⁴ Jörg Gielen,² Ute Aurbach,¹ Hilmar Wisplinghoff,^{1,5} Nathalie Jazmati^{1,2}

TABLE 2 AST results of the Reveal rapid AST system compared to the DxM MicroScan WalkAway test for 102 clinical Gram-negative strains and all drugs tested^{g,h}

Species	Reveal	No. of average strains	No. of tested antibiotics per species	No. of AST results of the reference method						% (no.) agreement		% (no.) of errors			
	TTR (h)			Total	Total used for EA calc.	Total used for CA and error calc.	S	I	R	EA ^{a,b}	CA	mE	ME	VME	
<i>Enterobacteriales</i>															
<i>E. coli</i>	5.4	73	20	1,460	1,453 ^{c,d,e}	1,454 ^f		1,229 ^f	71	154	98.5 (1,431)	97.1 (1,412)	0.3 (5)	0.4 (5)	20.8 (32)
<i>K. pneumoniae</i>	5.3	18	20	360	355 ^c	360		306	21	33	99.2 (352)	97.8 (352)	1.7 (6)	0 (0)	6.1 (2)
<i>K. oxytoca</i>	5.3	4	20	80	79 ^d	80		70	6	4	98.7 (78)	96.3 (77)	2.5 (2)	1.4 (1)	0 (0)
<i>E. cloacae</i>	5.1	3	19	57	57	57		42	1	14	96.5 (55)	96.5 (55)	1.8 (1)	2.4 (1)	0 (0)
<i>C. koseri</i>	4.9	1	19	19	19	19		16	1	2	94.7 (18)	89.5 (17)	5.3 (1)	6.3 (1)	0 (0)
Non-fermentative GNB															
<i>P. aeruginosa</i>	6.0	2	12	24	21 ^{c,e}	24		10	12	2	100.0 (21)	95.8 (23)	4.2 (1)	0 (0)	0 (0)
<i>A. baumannii</i>	4.2	1	8	8	7 ^c	8		5	1	2	100.0 (7)	100.0 (8)	0 (0)	0 (0)	0 (0)
Overall	5.4	102	n.e.	2,008	1,991	2,002		1,678	113	211	98.5 (1,962)	97.1 (1,944)	0.8 (16)	0.5 (8)	16.1 (34)

TABLE 3 AST results of the Reveal rapid AST system compared to the DxM MicroScan WalkAway by drugs^{g,h}

Drug	Reveal		No. of strains with AST results of the reference method					% (no.) agreement		% (no.) of errors			
	average TTR (h)	Total	Total used for EA calc.	Total used for CA and error calc.	S	I	R	EA ^{a,b}	CA	mE	ME	VME	ATU ^c
Amikacin	3.9	102	102	102	98	4		99.0 (101)	96.1 (98)	n.a.	0 (0)	100.0 (4)	
Amoxicillin-clavulanic acid (EUCAST)	4.0	99	99	99	72	27		91.9 (91)	85.9 (85)	n.a.	0 (0)	51.9 (14)	
Ampicillin	3.6	99	99	99	44	55		99.0 (98)	99.0 (98)	n.a.	0 (0)	1.8 (1)	
Aztreonam	5.1	99	99	99	90	1	8	100.0 (99)	100.0 (99)	0 (0)	0 (0)	0 (0)	
Cefepime	5.9	101	101	101	93	3	5	99.0 (100)	98.0 (99)	2.0 (2)	0 (0)	0 (0)	
Cefotaxime	5.4	99	99	99	92		7	99.0 (98)	99.0 (98)	0 (0)	1.1 (1)	0 (0)	
Ceftazidime	5.3	101	101	101	93	2	6	97.0 (98)	98.0 (99)	1.0 (1)	0 (0)	16.7 (1)	
Ceftazidime-avibactam	6.1	101	101	101	101			99.0 (100)	99.0 (100)	n.a.	1.0 (1)	0 (0)	
Ceftolozane-tazobactam	6.4	101	101	101	99		2	98.0 (99)	98.0 (99)	n.a.	2.0 (2)	0 (0)	
Cefuroxime IV	5.1	95	95	95		88	7	98.9 (94)	96.8 (92)	3.2 (3)	0 (0)	0 (0)	
Ciprofloxacin	4.1	102	92 ^d	96 ^e	81 ^c	3	12	96.7 (89)	97.9 (94)	1.0 (1)	1.2 (1)	0 (0)	5.9 (6)
Ertapenem	6.5	99	97 ^e	99	98		1	100.0 (97)	100.0 (99)	n.a.	0 (0)	0 (0)	
Gentamicin	5.1	100	100	100	93		7	98.0 (98)	93.0 (93)	n.a.	1.1 (1)	85.7 (6)	
Imipenem	6.5	102	102	102	99	2	1	100.0 (102)	100.0 (102)	0 (0)	0 (0)	0 (0)	
Levofloxacin	4.3	102	102	102	89	3	10	100.0 (102)	99.0 (101)	1.0 (1)	0 (0)	0 (0)	
Meropenem	6.6	102	97 ^f	102	101		1	100.0 (97)	100.0 (102)	0 (0)	0 (0)	0 (0)	
Piperacillin	5.0	101	101	101	62	7	32	100.0 (101)	94.1 (95)	5.9 (6)	0 (0)	0 (0)	
Piperacillin-tazobactam	7.3	101	101	101	92	3	6	97.0 (98)	96.0 (97)	1.0 (1)	0 (0)	50.0 (3)	
Tobramycin	4.1	102	102	102	95		7	99.0 (101)	94.1 (96)	n.a.	1.1 (1)	71.4 (5)	
Trimethoprim-sulfamethoxazole	4.0	100	100	100	86	1	13	99.0 (99)	98.0 (98)	1.0 (1)	1.2 (1)	0 (0)	

^aBecause of the limited concentration ranges for most antibiotics on the test plate MICs less or equal to the lowest concentration or greater than the highest concentration of a drug, were included in the calculation.

^bPercentage (number) of strains for which the difference regarding all drugs tested was no more than ± 1 log₂ dilution.

^cIn Reveal testing 6 *E. coli* strains showed ciprofloxacin MIC values falling in the area of technical uncertainty (ATU) and were excluded for CA as well as for error calculation. All 6 strains were tested susceptible with the reference method or MTS.

^dThe concentration range of ciprofloxacin on the AST plate was ≤ 0.06 mg/l, 0.25-1 mg/l (the MIC of 0.125 mg/l was skipped). If a MIC of the Reveal system and/or reference method was 0.25 mg/l the respective strain was excluded from EA calculation. This was the case for 1 *A. baumannii* strain, 3 *E. coli* strains, 5 *K. pneumoniae* strains and 1 *P. aeruginosa* strain.

^eThe concentration range of ertapenem on the AST plate was ≤ 0.125 mg/l, 0.5-1 mg/l (the MIC 0.25 mg/l was skipped). If a MIC of the Reveal system and/or reference method was 0.5 mg/l the respective strain was excluded from EA calculation. This was the case for 1 *E. coli* strain and 1 *K. oxytoca* strain.

^fThe concentration range of meropenem on the AST plate was ≤ 0.125 mg/L, 1-32 mg/L (the MIC values 0.25 mg/L and 0.5 mg/L were skipped). If a MIC of the Reveal system and/or reference method was 1 mg/L, the respective strain was excluded from EA calculation. This was the case for 3 *E. coli* strains and 2 *P. aeruginosa* strains.

^gTTR, time to result; calc., calculation; S, susceptible; I, susceptible increased dosage; R, resistant; EA, essential agreement; CA, category agreement; mE, minor error; ME, major error; VME, very major error; n.a., not applicable.

^hIn general, S, I, R categorization based on MIC results that were evaluated by the reference method or MTS (the latter was performed in case of discrepancies between Reveal and the reference method).

TABLE 5 Performance of Reveal AST with blood samples contrived with **CDC AR Bank** isolates

Parameter and study detail	Performance with spiked challenge strains
Parameter, % (no. positive/total no.)	
EA	97.7 (509/521)
CA	95.2 (496/521)
mE	4.0 (21/521)
ME	0 (0/122)
VME	1.0 (4/384)
Reveal avg TTR	4.4 h
Study set details	
No. of antibiotics	19
No. of species	6
No. of strains	33
No. of strain/antibiotic pairs	521
No. susceptible	122
No. intermediate	15
No. resistant	384
R (%)	73.7

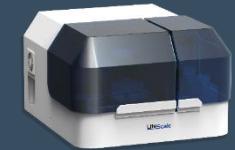
2022 PMID: 35607972

ANTIMICROBIAL DRUG	MIC CALLING RANGE (μ g/ml)	MIC CALLING RANGE										TOTAL		
		<i>A. baumannii</i> - <i>calcoaceticus</i> complex	<i>C. freundii</i> complex	<i>C. koseri</i>	<i>E. cloacae</i> complex	<i>E. coli</i>	<i>K. aerogenes</i>	<i>K. oxytoca</i>	<i>K. pneumoniae</i> group	<i>P. mirabilis</i>	<i>P. vulgaris</i>			
Amoxicillin / Clavulanate	4/2 - 16/8					✓	✓	✓	✓	✓		4		
Ampicillin / Sulbactam	2/1 - 64/32					✓	✓	✓	✓			3		
Cefepime	0.5 - 32			✓	✓	✓	✓	✓	✓		✓	7		
Ceftazidime	0.12 - 32	✓		✓	✓	✓	✓	✓	✓			7		
Ceftazidime / Avibactam	0.06/4 - 16/4			✓	✓	✓	✓	✓	✓	✓	✓	8		
Ceftolozane / Tazobactam	0.12/4 - 32/4			✓	✓	✓	✓	✓	✓	✓	✓	8		
Ceftriaxone	0.25 - 16				✓	✓	✓	✓	✓	✓		6		
Ciprofloxacin	0.25 - 2		✓		✓	✓	✓	✓	✓	✓	✓	9		
Ertapenem	0.12 - 1				✓			✓	✓	✓	✓	4		
Imipenem	0.5 - 8	✓		✓	✓	✓		✓	✓		✓	8		
Levofloxacin	0.12 - 4		✓	✓	✓	✓	✓	✓	✓	✓	✓	11		
Meropenem	0.5 - 16	✓			✓	✓			✓	✓	✓	8		
Meropenem / Vaborbactam	1/8 - 16/8		✓	✓	✓	✓	✓	✓	✓	✓		8		
Piperacillin / Tazobactam	2/4 - 64/4			✓		✓		✓		✓		4		
Tobramycin	0.5 - 8		✓	✓	✓	✓	✓	✓	✓	✓	✓	10		
Trimethoprim / Sulfamethoxazole	2/38 - 4/76				✓	✓		✓				3		
TOTAL		3	5	9	11	16	10	11	14	10	6	8	5	108

System reports interpretive categories (e.g., "S") for VITEK REVEAL BC GN02-AST according to FDA Susceptibility Test Interpretive Criteria (STIC).

1

2


3

4

5

6

	Radian	Pheno	ASTar	Selux	LifeScale	Reveal
Regulatory		🇺🇸	🇺🇸	🇺🇸	🇺🇸	🇺🇸
Throughput	🦠	🦠	🦠	🦠	🦠	🦠
TAT (h)	8	7	6	6-7	5	5
Samples	🔴	🔴	🔴	🔴	🔴	🔴

Objectives

- Describe the potential clinical benefits of rapid antimicrobial susceptibility testing
- Recognize the diagnostic devices that currently on the market in the U.S. for rapid antimicrobial susceptibility testing.

Cleveland Clinic

Every life deserves world class care.