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CONCEPTS OF PIC METHODS

—~V-[2né(w)]+Vp=pg (1)
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%Jru-Vq—V-(DVq):O (3)

- Method to advect property on
discrete particles (/tracers/markers)

- Transforms the PDE in (3) to a set of (non-coupled) ODE’s

- Many variants and evolutions (e.g. Particle-in-cell, Evans &
Harlow 1957; Marker-and-cell, Harlow & Welch 1965;
Marker-in-cell, Gerya 2003; ...)



EXAMPLE APPLICATIONS IN GEODYNAMICS
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MODERN PARTICLE METHODS:

Challenges when applying Particle methods to modern finite-
element codes:

* Quantifying accuracy and convergence behavior
* Load balancing strategies in adaptively refined meshes

* Geometry independent particle-cell search



ACCURACY: CONVERGENCE BEHAVIOR

Known from previous studies:

* Increasing the number of particles per cell converges towards a solution
(known from other fields, geodynamics: Tackley & King, 2003)

* Particles do not decrease convergence rate for second order accurate
methods if interpolation is accurate enough (Thielmann et al, 2014)

e Suggestion: Particles limit the accuracy of the velocity solution to at most
second order (Thielmann et al, 2014)

Our goal:

* Quantify the influence of the particles on the accuracy of the solution, in
particular in dependence of number of particles per cell (PPC)?

* |s it possible to increase the convergence rate above second order?

Our approach:

* Use existing instantaneous benchmarks and quantify accuracy for
different FEs, different interpolation schemes, and different PPC

* Develop a theoretical understanding of the underlying error sources

* Develop a new time-dependent benchmark with analytical solution



ACCURACY: CONVERGENCE BEHAVIOR

Using the SolKz (Duretz et al., 2011) benchmark:

* For constant PPC: 2"d order velocity convergence (like Thielmann et al,
2014)

* Forincreasing PPC with resolution: 3 order velocity convergence

* Even for a Q3xQ2 element: 3 order convergence (expected: 4th order)
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ACCURACY: CONVERGENCE BEHAVIOR

Using the SolKz benchmark:
* For an analytic viscosity: up to 4t order velocity convergence
* In general: Viscosity on particles limits convergence more strictly
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ACCURACY: THEORETICAL ERROR

Total error = difference

between continuous and

discretized Stokes

operator and properties:

(1) Error by density
approximation

(2) Error by viscosity
approximation

(3) Error by evaluation at
particle locations

(4) Error by finite element
approximation
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ACCURACY: THEORETICAL ERROR

Velocity error:

|w — wn||L, = O(h™+2) + O(h™+Y) + O(h E(h, PPC)) + O(h**1).

- The convergence order of the interpolation method (r) places an upper
limit on the velocity accuracy, just like the choice of finite element
degree (k)

- This upper limit depends on whether particles only carry density (r+2) or
also viscosity (r+1)

- There is a hard to quantify term E that depends on PPC and h (we will
experimentally try to estimate this term next)



ACCURACY: NEW BENCHMARK

New benchmark: Circular flow

- Analytical solution: Time
independent

- Numerical solution : Time
dependent error

- Pure FE method reaches

design convergence
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ACCURACY: CONVERGENCE BEHAVIOR

A comparison of different interpolation methods (arithmetic average vs bilinear least

squares approximation) shows expected results:
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ACCURACY: CONVERGENCE BEHAVIOR

Particle advection
scheme also limits
the accuracy, but
only for higher
order elements
Q2xQ1 element
shows optimal
convergence with
RK2 integrator
Q3xQ2 requires
higher order (e.g.
RK4)
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ACCURACY: CONVERGENCE BEHAVIOR

Results for FE order,

interpolation and
advection scheme
shows:
E(h,PPC)~1/PPC
Thus for optimal
convergence
(Q2Q1): PPC ~h
(Q3Q2): PPC ~h?
For typical
resolutions PPC <=
100 in 2D (<= 1000
in 3D)

Scalability?
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SCALABILITY: LOAD BALANCING

How to balance particle and cell work for adaptive meshes?

Partitioning of domain by
number of cells per process

For uniform particle density
large imbalance in particle
work

| + Imbalance grows with
} SR B L number of mesh levels

7-,-rJ-,-||-,-| T > Limited scalability

.|.




SCALABILITY: LOAD BALANCING

Particle Management: Variable Distribution: Balanced Repartition:

* Introduce particle * Generate variable * Adjust parallel partition
population management  particle distribution of mesh

* Remove/add particles e Adjust mesh according ¢ Retains identical solution
according to mesh to particles * Reaches reasonable

* Adds diffusion to * Requires a known scalability

particle properties region of interest
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SCALABILITY: LOAD BALANCING

Adaptive grid - Strong scaling
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EFFICIENCY: GEOMETRY INDEPENDENT

Which cell did a certain particle move to?

Independent of geometry

Dynamically changing mesh

) - Only assumptions:

’ Quadrilateral cells
Hierarchical refinement
CFL timestep




EFFICIENCY: GEOMETRY INDEPENDENT

Which cell did a certain particle move to?

Cell checks are expensive
o° « Check neighbors of old cell
" - Check closest vertex
1A - Can we reduce the number of

cell checks? Sort the
neighbor cells?




EFFICIENCY: GEOMETRY INDEPENDENT

Which cell did a certain particle move to?

Sort cells by distance to
particle

Find particle in first try for
many cases

Unreliable in adaptive
meshes



EFFICIENCY: GEOMETRY INDEPENDENT

Which cell did a certain particle move to?

Sort cells by angle between
vertex—particle and
vertex—center

Find particle in first try for
(nearly) all cases

Reduce work by a factor of 10
compared to checking all
neighbors

Independent of geometry
and mesh adaptivity



APPLICATIONS

- Large scale mantle convection:
- Track deformation of material
- Track origin of material
- Track composition of material




CONCLUSIONS

We present hybrid particle-mesh methods for use in arbitrary geometries and
adaptively refined meshes

Convergence rate of hybrid PIC-FE methods depends on FE method, interpolation

scheme and PPC. PPC needs to increase with mesh resolution to reach higher
order accuracy (not scalable).

Balanced repartition load balancing achieves reasonable weak scalability without
affecting the solution up to thousands of processes.

Angle minimization sorting reaches optimal complexity in arbitrary geometries.
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Code and benchmarks:


https://github.com/geodynamics/aspect

3. SCALABILITY: LOAD BALANCING

W=0 W=0.01 W=1.0

Balance an appropriate sum of cells and particles
Weight W determines the importance to balance particles

Optimal W depends on the particle work

Increased balancing of particles decreases balancing of cells



APPLICATIONS

After Tackley & King, 2003

« Entrainment benchmarks:

- Compare field methods
and particles

- Measure entrainment and
convergence of PIC methods




